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Abstract

In this dissertation, active control is used to suppress flutter and
divergence found in forward-swept advanced-composite wings. The stability
analyses are performed using linearized equations of motion in the Laplace
domain. These analyses are made possible by using Padé Approximants to
provide aerodynamic forces for damped wing and control surface motions. An
improved method of obtaining the polynomials of the Padé Approximants is
introduced. This method provides generalized aerodynamic forces in the
Laplace domain that are both accurate and easy to interpret. The method's
accuracy is indicated using correlations with wind tunnel experiments of
forward-swept wings. The improvement involves the use of one second-order
polynomial as a single common denominator for all generalized aerodynamic
forces. Two cantilever forward-swept wings are analyzed as examples for
active control application with leading- and/or trailing-edge flaps as
control devices. One test wing is most critical in divergence, while the
other wing is most critical in flutter. The flaps are actuated using
simple feedback signals from acceleration, velocity, and displacement
sensors., Using root locus plots of the characteristic roots from the
transformed equation of motion, the stability of each combination of flap,
sensor, and gain is determined. Stability is improved by an increase of
25% in the critical airspeed for the divergence-critical wing example using
a leading-edge flap and elastic displacement sensing. Similarly, stability
is improved by an increase of 30%Z in the critical airspeed for the
flutter—critical wing example using a trailing-edge flap and elastic
acceleration sensing. However these stability improvements are limited by
the emergence of secondary aeroelastic instabilities (which become most

critical) when the original primary instabilities are suppressed by active

control. However practical wing designs usually exhibit these secondary

instabilities at such high airspeeds that active control improvements to

i

oy

aeroelastic stability should be much larger when applied to actual flying

hardware.
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I. INTRODUCTION

The purpose of this investigation is to apply active feedback control
to the aeroelastic instabilities of divergence and flutter found in
forward-swept wings. First, an improved formulation for the calculation of
aerodynamic loads is developed in the Laplace domain. This aerodynamic
formulation will then allow use of the linear-analysis methods of classical
control theory that are posed in the Laplace domain. Using these methods,
active feedback compensation is devised for the control of both divergence
and flutter instabilities. These classical control design methods provide
simple control laws that increase to acceptable values the critical
airspeed at which flutter and divergence occur. These control laws provide
the link between the aerodynamic forcing devices of flap control surfaces
and the motion-measurement devices of wing-mounted sensors., Several
configurations of flaps and sensors are investigated, and the classical
method for linear controls allows for the independent investigation of the
effects of each sensor and flap configuration. Examples will be shown of
effects on flutter and divergence of both stabilizing and destabilizing
control laws. In these examples, the trade-off can be demonstrated that

sometimes occurs in improving one instability at the expense of another.

Background

Wing sweep has been used as a method for delaying the effects of
compressibility in high-speed wings since World War I1. The magnitude of
the velocity of the airflow perpendicular to the leading-edge of a wing can
be used as a measure of the compressibility effects that develop on that
wing. As this velocity component approaches the speed of sound, large
increases in drag occur initiated by the severe adverse-pressure gradients
that develop on the wing's upper surface. As a wing is swept, its leading
edge 1is no longer perpendicular to the direction of the freestream airflow,.
It is rather, at an angle defined by A , the sweep angle of the wing.
Therefore, only a component of the total-velocity vector is perpendicular

to the wing's leading-edge. By increasing . the total-velocity vector
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can be increased, while, at the same time, holding the component
perpendicular to the leading-edge at an acceptable level (Ref. 1).
Therefore, the airplane can travel faster while the detrimental
compressibility effects of the wing are reduced. Either positive sweep
(wing tip positioned downstream from the wing root) or negative sweep (wing
tip upstream of the wing root) has the same theoretical potential for
reducing the losses due to compressibility of an infinite wing. However,
both forward- and aft-swept wings exhibit aeroelastic instabilities.

Figure 1 (Ref. 2) shows how forward-sweep results in a more severe drop
(than an equivalent aft-sweep) in the airspeed at which aeroelastic
divergence occurs. In aft-sweep designs, Figure 1 also suggests that
flutter generally has a lower critical airspeed than divergence. It has
historically been much more structurally efficient to eliminate the flutter
problems of metal wings having aft-sweep than the diveregence problems of
metal wings having forward-sweep. Thus, aft-sweep rather than
forward-sweep has been the prevalent design approach for improving

compressibility characteristics of high-speed wings.

There have been some isolated uses of forward sweep in the past, and
brief history of the use of forward sweep is found in Reference 3. The
earliest example of modern aircraft employing an all-metal design that used
forward sweep is the Junkers 287 German bomber of World War Il1. A later
example is found in the HFB 320 business jet of the mid-1960's. Both of
these aircraft used a forward sweep of less than 15° to move the wing's
“"carry through” structure in the aircraft's fuselage aft of the payload
area. In these designs, structural packaging (rather than compressibility
problems) was the prime reason for using the forward sweep. The bomber
never completed its early flight tests because the Allied armies overran
its testing area, and the business jet was built only in limited
quantities. But no difficulties are reported for either aircraft as a
result of the forward sweep. The forward sweep of both types of aircraft
is not enough, however, to significantly improve high-subsonic
compressibility problems of modern high-performance aircraft. When the

negative sweep angles of 30° or more (necded to delay compressibility for
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high-subsonic aircraft) are used, the wing's structural weight becomes
excessive. But now that aeroelastic tailoring of composite materials in
the wing's structure can solve the divergence problem, the possible

aerodynamic benefits of this sweep configuration are being quantified.

Aeroelastic Divergence and Flutter

The primary wing stability problems examined here are the aeroelastic
instabilities of flutter and divergence. Brief explanations of these are
in order. These wing instabilities result from combinations of flow
conditions and wing properties (both elastic and inertial) that allow wing
deformatious to increase quickly until there is structural failure. While
rigid body motion of the wing can, in some cases, contribute to these

instabilities, this investigation will examine only the more fundamental

O SN

forms of flutter and divergence that contain no rigid-body motion. Flutter
- and divergence conditions are normally defined in terms of the freestream
airspeed of the wing experiencing them. While several airspeeds may be

- found that have neutral aeroelastic stability, the lowest freestream

. airspeed at which neutral stability is maintained determines the critical
airspeeds for divergence or flutter. Reference 2 gives definitions for
divergence and flutter. They are summarized here as they apply to

- cantilever wings.

Aeroelastic divergence occurs when a lifting surface attains a
freestream airspeed, where any small flow disturbance produces immediate
and progressive increases in the elastic deflection of the wing, until
structural failure occurs. Flutter is an oscillatory aeroelastic
instability that involves the interaction of the elastic deflections of the
wing, the associated changes in the wing airloads, and the mass properties
of the wing. Flutter occurs when a lifting surface reaches an airspeed
where any small flow disturbance causes immediate oscillatory elastic

deflections that grow until structural failure occurs.

The deformation patterns of flutter and divergence explain why,
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traditionally, aft-swept wings (pronc to flutter instabilities) have been
preferred to forward-swept wings (prone to divergence instabilities).
Flutter instabilities, as previously mentioned, involve the inertial
characteristics of the wing (defined by its mass distribution) in addition
to the wing stiffness and aerodynamics. As airspeed increases, flow
conditions develop allowing energy to be extracted from the airstream.

This condition occurs because of the phase relationship between oscillatory
wing motion (strongly influenced by the wing's mass distribtution) and the
accompanying aerodynamic loads. Classically, small changes in the mass
distribution and stiffness in metal wings can be used to increase the
critical airspeed for flutter until this airspeed is outside the aircraft's
operating envelope. Divergence instabilities in metal wings, however, must
be eliminated by adding usually prohibitive amounts of structural material.
This large amount of material is necessary to make the wing's structure
stiff enough to minimize the wing's deflections under all airload
conditions. This stiffening for divergence requires much more structural
weight than the increa.es in mass required for the elimination of flutter
(Ref. 4). When forward-sweep, rather than aft-sweep, is employed in metal
wings, the result is a heavier aircraft. Thus, high-speed aircaft have

historically incorporated aft-swept wings.

Aeroelastically Tailored Composite Materials

With the advent of advanced filamentary composite materials, such as
graphite/epoxy and boron/epoxy, new approaches for the elimination of
flutter and divergence are available. The design technique of aeroelastic
tailoring exploits the anisotropic material characteristics of composite
materials to solve aeroelastic problems in aircraft wings. Proper
orientations of the reinforcing fibers create beneficial couplings in the
deformation patterns of tailored composite wings. These deformation
patterns postpone the onset of divergence and flutter to safe airspeeds
(Ref. 5). Typical of these patterns is a twist introduced into the wing as
it bends. Using aeroelastic tailoring, Krone (Ref. 6) has shown that it is
possible to design high-performance forward-swept wings using a wing

structure that is as light as that of aft-swept wings. With the
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opportunity now available to build forward-swept wings of reasonable

welght, several aircraft manufacturers have re-examined forward-sweep.

They have shown that (Ref. 7) significant improvements in wing aerodynamics
and alrcraft flight control appear to be possible using forward-sweep
rather than aft sweep when applied to high-performance fighter aircraft.
These improvements are due, in part, to the characteristic of inward
spanwise flow near the wing tip in forward sweep. The use of forward sweep
allows the wing-tip region to produce lift more effectively, promotes
root-stall rather than tip-stall, provides higher sweep for the shock
formations on the upper wing surface, and results in better cross—-sectional
area distributions when applying area-rule techniques to minimize wave drag
(Ref. 3). The government is now funding the construction of a
demonstration aircraft (the X-29) with forward-swept wings to investigate
the extent of these benefits, and aeroelastic tailoring of its advanced
composite wing structure provides adaquate critical airspeeds for
divergence and flutter. This research examines an alternate method for

providing aeroelastic stability for forward-swept wings.

Active Feedback Control

; }"') e):_;_:QJ_JLJ;;‘R:).rLI;;.x.n.n

In the investigation documented here, active feedback control is used
to Increase the critical airspeeds for divergence and flutter found in a
forward-swept wing similar to that found on the X-29. If active controls
are used to stabilize aeroelastic divergence and flutter, then the use of
highly coupled composite wing construction can be avoided. Active control
would then allow conventional metal construction or more traditional
near—-isotropic composite construction of forward-swept wings. The active
control system considered here incorporates movable leading- and/or
trailing-edge flaps to provide the stabilizing aerodynamic forces for the
aeroelastic instabilities. The feedback loops used to direct the flap
movements consist of elastic-motion sensors connected to flap actuators
through linear-gain amplifiers. These loops transmit signals
(corresponding to the sensed motion) to the flap actuators. The gain
amplifiers adjust the signals to proper levels for maximum aeroelastic

stability of the wing. A conventional and methodical approach is used to
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determine the most useful feedback loops and best gain values for the

improvement of aeroelastic stability.

Approach

In this research, the classical “"gain-parameter root locus” method is

used for determining the required feedback and control to suppress

divergence and flutter. The application of this method to aeroelastic

a, a_

divergence was first used by this author and reported in Reference 8. Each

- v, rl

individual sensor and aerodynamic flap is examined in individual linked
control paths. In this way, the controls engineer can examine the impact
of each control law on the elastic stability of the wing. The results of
these studies will suggest general conclusions about active-control
applications to forward-swept wing problems. While optimal-control
techniques are not used in this general investigation, they can increase
the effectiveness of active-control systems on specific aircraft. Wykes

has used these optimal-control techniques in designing control systems for

B o4 o s T g e 4 Ad

forward-swept wing flutter caused by elastic wing-bending and rigid-body

coupling (Ref. 9). Chipman has also used these control techniques to

devise a system to suppress forward-swept wing aeroelastic divergence on an

;f X-29A configuration (Ref. 10).

History

The study of the effects that active control has on aerocelastic
instabilities is not new. It began with the first applications of
hydraulically boosted control surfaces in the early 1950's. With the
advent of high subsonic flight, the pilot's effort to move control surfaces
was too great, so boost devices were introduced to reduce his effort.
Early investigations of the effects on aeroelasticity were aimed at
avoiding flutter that could inadvertently be induced with these new boosted
control systems (Ref., 11). The investigations progressed in the 1960's
from merely avoiding the aggravation of aeroelastic instabilities to later
using the control surfaces to providc stabilizing forcing fonctions for
rigid-body as well as elastic instabilities (Ref. 12). A pilot made the

first flight demonstration of feedback control for flutter using a Boeing
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B-52D flight—-test vehicle (Ref. 13). Here, a low-frequency wing-flutter
mode was successfully stabilized by actuating trailing-edge flaps according
to wing elastic motion. Subsequently, higher frequency and more
complicated instabilities were examined. The latest applications of active
controls in the aeroelasticity of conventional wings are adaptive-control
algorithms that suppress flutter in external stores (Ref. 14 and Ref. 15).
All of these applications of active control to aeroelastic instabilities
were made to straight- of aft-swept wings exhibiting flutter rather than
divergence aeroelastic instabilities. Active aercelastic control was first
applied in forward-swept wing configurations to solve a flutter instability

involving rigid-body pitch and elastic wing-bending (Ref. 9 and Ref. 10).
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Early flight demonstration designs of forward-swept wings showed a strong
sensitivity to this rigid-body pitch and elastic~wing bending flutter.

This effort is focused on active control applications to aeroelastic
flutter and divergence without rigid-body motion for forward-swept wings.
This research is done by using a cantilever boundary condition for the wing
structure. Thus, rigid-body motion (such as rigid-body pitch) is not
allowed in the analyses, and classical wing divergence can be observed in

the wing's resvonse to disturbances.

Overview

The presentation of this research is organized in the following
manner. The study of feedback control for forward-swept wings is much
easier if the development of their equations of motion in the Laplace
domain results in a form compatible with standard active control

techniques. Thus, the development of the equations of motion, and in

particular the development of suitable aerodynamic forces in polynomial

form, is presented first to show the wing equations in proper form for the

stability analvses. Using these equations, the wing responses are then
examined for disturbances where a series of feedback sensor, gain, and
control -surface configurations are included in the stability equations.
Successful feedback-control configurations for forward-swept wing flutter

and diveryence are found and then examined in more detail. Finally, come

conclusions are drawn from the results of the case examples. T1n an
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. appendix that follows the main text, some of the development details and
stability results are included from preliminary calculations using a
two-dimensicnal airfoil. Also included as appendices are details of the
doublet-lattice method and some wind tunnel correlations made using the
Padé approximations to doublet-lattice aerodynamics. The specific items

contained in each chapter are organized in the following manner.

The development of the equations of motion in the Laplace domain is
described in Chapter II. Details are included of the transformed mass and
stiffness representations, along with the coordinate system used in the
analytic model of the wing. Using insight developed from two-dimensional
wing examples found in Reference 16 (and outlined in Appendix A), a new
formulation for the wing aerodynamic forces is presented in Chapter II.
This formulation presents a new method for employing Padé Approximant
polynomials in calculating wing forces due to damped motion. These
polynomials are also used in calculating the stabilizing forces created by
movements of the leading- and trailing-edge control surfaces. The feedback
control laws and the sensor measurements they require are also described in
Chapter II. The sensor locations and the several combinations of
measurements they provide offer 96 possible simple feedback control
combinations for stabilizing flutter and divergence. These combinations

are then applied to specific wing examples in Chapter III.

In order to demonstrate the usefulness of the several feedback control

combinations described in Chapter II, two example cases for forward-swept

wings are examined in Chapter III. These example cases use a cantilever
forward-swept wing geometry similar to that used to perform the early
forward-swept wing fighter studies (Ref. 7). These early forward-swept
wing geometries were developed to perform missions similar to those of the
light-weight fighter of Reference 17. The active-controls applications
found in this investigation represent active-control applications for
modern fighter-category aircraft. These forward-swept wing examples have
either flutter or divergence as their most critical acroelastic

instabilities., The evaluation and selection of useful feedback control
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laws for these examples are presented graphically using plots on the
complex plane. These are plots of the loci of the characteristic roots
calculated from the wing equations of motion. These loci are defined by
the movement of the roots that results when a selected parameter (amplifier
gain or freestream airspeed) is varied. With these plots the stability of
the wing can be inferred and most advantageous gain values selected for

improved stability.

In Chapter IV some conclusions are drawn from the case studies of
Chapter III1. Not only are specific wing stability improvements discussed,
but also some changes in wing design philosophy are suggested. When active
control methods are used for stability augmentation, some of the
restrictions can be removed on the wing structural designer. The specific
wing stability improvements shown here illustrate possible approaches for
wing stability augmenation. The actual amount of stability improvement
greatly depends on the specific wing designs examined. The considerable
improvements demonstrated here suggest however that active control can

contribute considerably to wing aeroelastic stability.
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The equations of motion to be used for the wing aerocelastic stability
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calculations are described in this chapter. The formulation used for the
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-

aerodynamic forces is discussed in some detail since it differs from
methods used in the past. Using the formulation of these aerodynamic
N forces, the stability equations for the unaugmented wing are then B
~ calculated. Forces due to movement of the wing's leading- and
trailing—-edge control surfaces are also calculated. These control-surface
forces are then used to stabilize the wing by requiring the control i'
surfaces to move according to control laws that use as inputs measured wing

motion. These control laws can be formulated to prescribe the

PO

control-surface motion as functions of the wing degrees-of-freedom. This

linkage between control-surface forces and the degrees-of-freedom provide

e e a K

the means to incorporate the stabilizing control-surface forces in the
unaugmented wing equations of motion. The resulting augmented wing
equations of motion can then be used for examination of the best gaim

values in the control laws for improved wing stability.

3 The equations of motion used here for the aeroelastic-stability

. calculations are developed in a similar way to the equations used for other
stability calculations, such as buckling. That is, a wing at equilibrium
in the flow is assumed. The wing is then subjected to small disturbances,
and the stability of this equilibrium position is determined by the
changing wing position in relation to this equilibrium with the passage of
time. By observing the wing response about the immediate vicinity of the
equilibrium position, the stability of the wing can be determined using
linearized equations for the structure and resulting aerodynamic forces.
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These equations are developed in the following sections. l!

In developing the wing ecuations of motion, the equilibrium wing

position can be any steady-state lift condition for the aircraft. The
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position most commonly used, and the one used in this investigation, is the

zero-11ft condition. It can be shown that the linearized equations about
this equilibrium condition will properly predict the critical velocity for
aeroelastic instabilities (Ref. 2). Accordingly, the wing will be treated
aerodynamically as a flat plate without twist or camber. The wing is at
zero angle-of-attack before the disturbance is applied, and the wing's
deformation response relative to the zero condition will determine
stability. Deformations that eventually die away to zero and remain zero
with the passage of time indicate a stable configuration. If the
deformations eventually grow without bound as time passes, an unstable
configuration is indicated. And the critical-flow conditions (where the
deformations neither grow nor subside with time) indicate neutral-stability

conditions.

The wing examined here is a cantilever forward-swept wing (Figure 2)
that has its root rib rigidly attached to an immovable foundation. This
cantilever attachment eliminates any rigid-body aircraft motion from the
wing's stability analysis. The wing, in its undeformed state, has a
neutral plane (or plane of symmetry) in the x,y plane, with the x axis at
the centerline. The y axis is perpendicular to the x axis. The wing
deformation is calculated from the movement of this neutral plane and
represented by the function h, defined in terms of the spatial x, y
locations and time t. The transverse displacement h is approximated by a

finite sum:

N
h(x,y,t) = Zui(x.y)ai(t) (1
i=1

The displacement functions ui(x,y) are the first N natural vibration mode
shapes (out-of-plane) of the wing, and the time functions ai(t) are the
modal amplitudes that prescribe the contributions in deformations of each
mode with time. The equations of motion are developed from Lagrange's

equation.
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(2)

In this equation, T is the wing's kinetic energy, U is the elastic strain

energy, and Qi is the total generalized force.

- The kinetic energy can be obtained by summing all of the kinetic

energy in each element of the wing's mass using the vertical velocity h,

) ’

N T = 1/2 [E(x,y,t)lzﬁ(x,y)dxdy

74 J wing area

' rr N N
= 172] [ 1) 0 Gana 011) u (x93 (018 Goydandy (3)
7 J i=1 j=1
wing area

N [
y The wing's mass distribution as a function of x and y is the function e.

By interchanging the orders of integration and summation, equation 3 can be

simplified.
N N
T =1/2 Z Zmijéi(t)éj(t) (4)
1=1 j=1

The constants mij represent the inertial coupling terms beween the

generalized coordinates u, and uj.

g G63)u, (ev) B (x,y) Jdxdy (5)

1] mij =

\
% wing area
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The matrix of elements m1j is symmetrical, allowing i and j to be

interchanged.

The potential energy term, U, is developed from the internal elastic
forces created in the wing, resulting from the deformation of its elastic

structure, as described in Reference 2.

U= 1/2 Hh(x,y.t) fﬁux.y;g.nmmg,n.mdgandxdy (6)

wing area wing area

The stiffness function, k(x,y;g,n ), defines the force required at x,y to
maintain a unit displacement in the wing at location §.7z of the wing. By
using the form of h in equation I, the area integration over the wing can

be included as constants in the energy summation.

J

N N
V=172 ) ) ke (0a ) )
i=1 j=I

The area integrations define the constants kij which relate the structural

stiffness influences between the generalized coordinates u, and u,:

i 3

kyy = fui(x,y) fn«x,y;g,n)luj(g,72>d§dedxdy (8)

wing area wing area

The generalized forces, Qi’ are calculated using the natural-mode

generalized coordinates of equation 1. They include both the aerodynamic

forces Faero (resulting from the wing shape) and the force that initially

disturbs the wing from its equilibrium, Fdist:
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Qi total [Faero(x'y't) + Fdist(x,y,t)]ui(x,y)dxdy (9)

= Q +Q

i aero i dist

When all of the energy terms are combined into equation 2, the resulting
set of N equations of motion is obtained in terms of the vibration-mode

generalized coordinates:

N

N
Zmijai(t) + Zkijai(t) = total (10)
j=l j=l i = l.'.N

The number of modes used (and therefore the value of N) in the equations of
motion is determined by the least number of coordinates required to
accurately predict Ud and Uf. For the wing studies, the first four vacuum
vibration modes are sufficient. The equations can be written in more

compact form, using matrix notation.

M) am} + K] {aml - M (1)

These equations can now be solved to determine if any of the resulting
coordinates ai(t) will increase in magnitude with time and define an

aeroelastic instability.

Structural Representation

The calculations of the normal-mode shapes uy and the area
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integrations of the influence functions, such as k(x,y; g ,7? ), for the
equations of motion are made using a Rayleigh-Ritz formulation, (Ref. 2)
similar to that used for plates. This Rayleigh-Ritz approach lends itself
to continuous polynomial descriptions of the stiffness and inertia for the
wing structure, and polynomials for thickness distributions are the easy
way to represent multi-layered composite structure. The Rayleigh-Ritz
formulation 1s, therefore, especially useful for the kind of wing used in
this research. The wing structure is made of advanced filamentary

compos ite material aeroelastically tailored to provide selected flutter and
divergence airspeeds. The tailoring of the composite material results in
spanwise and chordwise variations in the thickness of the layers of

compos ite material. These variations are so prescribed to get a wing
structure that deforms in desired patterns under specific load conditions.
These material distributions in the wing-box covers can be represented best
as polynomial functions of x and y. This plate formulation, employing
these polynomials, is highlighted below.

A description of the wing structure is useful in understanding the
Rayleigh-Ritz plate analysis. To help with this description, a planform
view of the cantilever wing is given in Figure 3. Both the aerodynamic
planform and primary load-carrying structure (structural box) of the wing
are depicted. The cantilever condition for the structural box is shown at
its root rib. The wing planform has a leading-edge sweep of —31.10. The
semi—span is 265 inches, with the aircraft’'s centerline root chord of 136
inches and a tip chord (parallel to the freestream direction) of 58 inches.

The wing's thickness-to-chord ratio is 5%.

The structural box is that portion of the wing's volume that contains

all of the primary structure for the wing. So those portions outside this

box are normally considered as secondary structure. The deformations in

1
3
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the secondary structure are calculated by extrapolating (into the planform
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region of the secondary structure) the deflections and rotations occurring

at the perimeter of the primary structure.

The structural box is modeled analytically as a layered plate and
shown in cross-section with the section-cut of Figure 3. Each layer is
described using a thickness polynomial in the x and y over the planform.
Each layer contains a thickness distribution of advanced composite material
corresponding to a particular fiber direction. The wing plane of symmetry
is defined at O on the z axis (the mid-plane of the plate), so all of the
structure in these layers above the plane has a mirror image below this
plane. There are three material layers on each side of this neutral plane,
and these three layers above and below the plane collectively represent

res pectively the wing-box upper and lower covers.

The composite material used in each layer is a unidirectional graphite
fiber embedded in an epoxy matrix. The unidirectional properties used for -1
this investigation are typical of graphite/epoxy systems used in aircraft
and represent current design values. The material density is .054 1bs/in3. '!
The Young's Modulus for the fiber direction is 21.x106 lbs/inz; and for all ]
the directions transverse to the fibers the modulus is l.2x106 lbs/inz. ]

Poisson's Ratio is .21 with a shear modulus of .65x106 1bs/1n2. Since g’

there are three layers for each side of the wing box, there will be, at
most, three different fiber directions for the wing box. These directions
are prescribed by the angle the fibers make with the leading-edge sweep
line of the wing box as shown in Figure 3. The thickness distribution of
each layer with a given fiber angle is allowed to vary both spanwise and
chordwise according to sixth-order polynomials. These thickness
distributions are required to fit inside the external geometry of the wing
box. 1In the actual wing box, the structural-box covers are stabilized by a
layer of substructure such as spars, ribs, or full-depth honeycomb

material. In this plate representation of the wing box, the substructure

is another layer of material filling the volume between the upper and lower

covers., It has infinite shear str. gth and a density of aluminum

honeycomb. This substructure layer is reprecentative of a high-modulus

full-depth honeycomb core. The wing box 1s enclosed by a leading-edge
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spar, trailing-edge spar, root rib, and tip rib. These structural members
I are included in both the elastic and inertial calculations for the plate
analysis. The geometry of the plate thus comprises seven layers of
material arrayed s ymmetrically about the x,y plane. The total plate
thickness is prescribed by a third-order polynomial in x and y. 1In

summary, this plate volume has the three composite layers clustered at the

.. T Y v o T

upper and lower surfaces. The volume in between the upper and lower

K clusters is treated as the seventh layer of substructure.

' The above plate geometry (resulting from modeling, analytically, thin
. fighter-wing structural boxes as plates) lends itself to thin-plate theory.
Therefore, the neutral surface is assumed coincident with x, y plane before
loads are applied to the wing. After the loads are applied, no in-plane
stress or "membrane” stretching of the plate is allowed at the neutral
surface. The plate analysis uses further simplifying assumptions to make
the calculations easier. The first assumption requires that lines in the
wing box normal to the neutral plane remain normal to that planme in the
deformed state of the wing box when loaded. This assumption is also known
as the Kirchoff hypothesis and implies a second assumption, that of small

displacements throughout the structural box.

The plate analysis used here calculates the influence-function
integration of equation 8 using a Rayleigh-Ritz approach for a thin square
plate of unit length on each side. Thus, the trapezoidal wing box planform
must be converted to a unit square planform. A set of mapping functiomns
converts the general trapezoidal geometry of the wing box to the unit
square. Then a sixteen-term Taylor series can be used in the integration
of equation 8 to approximate the elastic relationships of the square plate.

The assumed displacement functions used for the Rayleigh-Ritz calculations

are made up of sixth-order Legendre polynomials prescribed in both the

spanwise and chordwise directions of the unit square. Using these Legendre

.
Y

polynomials to describe the mode shapes, the mass contributions of the

equations of motion can be calculated from equation 5. All that remains

. ’..'-" .

then is the development of the generalized forces. The development of

suitable expressions of Q1 are discussed in detail in a following section.
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To determine the aeroelastic stability of the cantilever wing, the
generalized equations of motion in matrix equation 1] are used to calculate
the wing's motion after the occurrence of a small disturbance. An unstable

condition exists when the generalized coordinates a, of equation 11 get

i

larger as time lapses. The way the functions a, change with time is

i
calculated here using a Laplace transformation from the time domain. For
items transformed with the Laplace transformation, the notation is the bar

over the variable.

N

J1) uyxya ()]

i=1

e
e-St[Zui(x,y)ai(t)]dt (12)
o i=1
N

Zui(x,y)gi(S)
=1

i

a{[mx,y,t)]

]

n
f= ot B ]

(x,y,s)

The motion of any x,y locations of the wing in time can now be calculated
using the Laplace variable s. Transforming matrix equation 1] into the
Laplace domain produces algebraic equations in s rather than differential

equations in time.

SZ[M]H + [K]H = {6} total (13)

When the generalized forces are transformed into the Laplace domain, the
resulting algebraic equations of motion can be used in a stability
analysis. Positive, neutral, or negative aeroelastic stability of the wing
is then determined if the inverse tranzform of Ei(s) becomes smaller,
remains constant, or grows with time respectively. The calculation of
these transformed aerodynamic forces regquires a method for predicting the
loads due to damped motion rather than just oscillatory motion. This

requirement has historically offered considerable difficulty, but it is now
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possible to meet this requirement using the following develcpment of the

generalized forces in the Laplace domain.

Aerodynamic Forces

In this section the method for calculating the aerodynamic forces of
the wing is described. The formulation employed here uses Padé
Approximants as polynomials to represent the wing forces. The Padé
Approximants provide a means of calculating in the Laplace domain the
aerodynamic forces from damped wing motion. A desirable feature of these
Padé Approximants is that they can be calculated using presently available
methods for pure sinusoidal motion such as the doublet-lattice method of
Reference 18. The doublet-lattice method is desirable because it can be
used for general lifting surface geometries and allows the representation
of control surfaces on these lifting surfaces. The way the Padé
Approximants are calculated and used have been modified here to improve
their utility in wing aeroelastic stability analyses. This improvment is

outlined in the following descriptions.

The use of Padé Approximants here results from some preliminary
evaluations of approximating functions such as those used by Vepa (Ref. 19)
and direct calculations such as those suggested by Edwards (Ref. 20). The
evaluations were made using a simple two dimensional airfoil and are
summarized in Appendix A. The method used here is similar to those used by
active-control analysts to obtain transfer functions in the Laplace domain
for unknown “black box" devices. That is, known functions are input into
the “black box" and the resulting responses from the "black box" are
recorded. Using these measured responses a transfer function can be
calculated that approximates the "black box."” For aeroelastic
calculations, the “"black box”™ is the sinusoidal aerodynamic prediction
methods , such as doublet-lattice. These provide the necessary force
responses to the known input functions which are the sinusoidal wing
motions. The Padé Approximants are the transfer functions of s that

provide wing forces due to damped wing motion.

The Padé Approximants are ratios of polynomials in the Laplace

variable s that have constant coefficients, They are called Padé because




of their similarity to the Padé method of approximating measured data with

series (Ref. 21). Schwanz has summarized and documented several forms of
approximating functions in Reference 22. The functions used here are
chosen based on their accuracy of aerodynamic force approximations and
their compatibility with the wing equations of motion that are written in
the Laplace domain. The form 1s shown in equation 14 and is similar to

that suggested by Vepa.

n d

_—_— £ £

Ry = ) st 1/ UL+ ) @ st (14)
£=0 f=1

The force corresponding to degree-of-freedom j and created by
degree-of-freedom 1 is represented by a polynomial of order n divided by a
polynomial of order d. These polynomials of the Laplace variable s have
the constant coefficients Pfjl and ijl' These coefficients are defined by
a two-stage fitting process using the least-sguares method. The orders n
of the numerator and d of the denominator are 3 and 2 respectively. These
orders were chosed as a result of preliminary evaluations made of Padé
Approximants using a two-dimensional airfoil. These airfoil studies are .&
)

highlighted in Appendix A.

In order to determine the polynomial coefficients in equation 14, wing R
aerodynamic forces are first calculated for pure sinusoidal wing motion.

These sinusoidal forces are calculated for several frequencies of wing

motion. Twenty values of frequency are used here to provide a frequency

range wide enough for calculating Padé Approximants that are capable of

predicting both flutter and divergence. The coefficients of the
polynomials in equation 14 are then adjusted to provide the best
approximation in the least-squares sense of the forces at which the

frequencies were calculated. Each of these frequencies of wing motion is

te
R
R
R
.

specified in the non-dimensional form of equation 15 and is referred to as

a reduced frequency k.
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k = Whb/U (15)

In defining this reduced frequency, W/ is the actual sinusoidal frequency,

U is the freestream airspeed of the wing, and b is a wing reference length,

e LR LR s ST

The value of b is usually half the mean aerodynamic chord or half the wing
root chord. The root semi-chord is used here. The forces calculated as a
function of frequency k can be related to equivalent forces in the Laplace
domain as a function of s by observing the constituents of s. The value of

s can define a root from the equations of motion in the Laplace domain.

s = 0+ 1w (16)

The real part of s, noted here as O, defines the sense of damping, and the
imaginary part, noted here as (., is the frequency. By
non-dimensionalizing s in the same way as was done with W in the reduced
frequency of equation 15, the relationship between k and s can be seen.

s =sb/U
Ob/U + ik

(17)

Note that in the special case of zero damping 5 is defined only by k as its
imaginary part. Thus, aerodynamic forces calculated for the twenty reduced
frequencies using the doublet-lattice method are valid for pure undamped
sinusoidal motion. Therefore, they can be used for the Padé fitting
process by providing twenty sets of forces for non-dimensional and purely
imaginary values of s. The polynomials of s are then calculated to
approximate these twenty sets of forces using a least-squares fitting

algorithum.

The detailed steps of the aerodynamic calculations used here begin
with the sinusoidal airleads. The source of the forces for subsonic
compress ible airspeeds used here is the doublet-lattice method of Reference

18. This is a method that uses arrays of doublet singularities in
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; potential flow and is discussed in more detail in Appendix B. These
i singularities create the same downwash at selected locations in the
e potential flow field that would correspond to downwash caused by the

oscillating wing. As described in Appendix B, this method provides a way
of calculating the unsteady aerodynamic forces by generating linear

aerodynamic influence coefficients a The wing planform is divided into

small regions or panels and the aij ignstants relate the effect each panel
region has on all the other panels. The coefficients define the force
contribution on the ith panel due to wing motion at the control point of
the jth panel. Therefore, forces on the wing are represented by
concentrations of forces in each panel using the superposition of the

influence of all panels, as represented by matrix equation 18.

/ \ B e e \

Fy(t) 311 212 2 lm (hl(t)

Fz(t) ay) 899 + ¢ - 3 hz(t)
< ; - < . (18)
\Fm(t)/ a " Ca \hm(t)

Therefore, as the panels are arrayed over the entire wing planform, the
overall forces on the wing are represented. The doublet-lattice
idealization of the forward—swept cantilevered wing for this effort is
shown in Figure 4. These 96 panels provide the array of forces created on
itself as the wing performs sinusoidal motion in the presence of streamwise
airflow. These sinusoidal forces are then put in generalized form to be
compatible with the wing equations of motion. This is done using the wing

natural vibration modes.

Recall that the coordinates for the cantilever wing are the wing's
natural-vibration mode shapes. Therefore, a coordinate transformation is
needed to make the doublet-lattice aerodynamic-influence coefficients
compatible with the wing's modal-coordinate system. This transformation

uses a matrix of constants E prescribing the values of each mode shape 1

1j
at the x,y coordinates of control point j. :j

"~
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Figure 4 Panel Geometry For The Wing
Doublet-Lattice Aerodynamics
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Elj = ul(xj,yj) (19)
A similar transformation is needed to generalize the forces occurring at
the panels' force points. This makes the forces compatible with the modal
degrees-of -freedom. This generalization is made using a modal

trans formation matrix E evaluated at the quarter chord locations of the
panels. For simple harmonic motion and N modes, the resulting generalized

forces are now functions of the coordinates al(t).

{Q(t)} - 1Y [A1(E) {am( (20)
1/4 chord 3/4 chord

Remember that the al(t) terms are the time—-dependent coordinates for the
modal degrees-of-freedom. They must describe simple harmonic motion so

that the doublet-lattice influence coefficients are applicable. Equation

20 is simplified to represent the aerodynamic forces for the equations of

{Q(t)z = [A]{a(t)l (21)

The complex constants for A are calculated for a chosen value of reduced

motion.

frequency k and Mach number using the doublet-lattice computer program.

The doublet-lattice method just described can be applied to lifting '
surfaces of general shape. This suggests that it should be applicable to I1
the forward-swept wing geometry used here, and its capability to represent 1
forward sweep is confirmed by wind-tunnel correlations in Appendix C. The .
previous developments can provide only sinusoidal forces for a chosen k Ii
using the doublet-lattice method. The Padé Approximant method is used to .

extend the results to provide damped-motion wing aerodvnamic forces.

,. ,_ ..
N « . [ o
e 2

The calculations of the polynomial coefficients for the Padé

Approximants are done after the sinusoidal forces are generalized into the
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modal degrees-of-freedom. The generalized forces are smooth functions over
the wing planform and provide proper descriptions of the wing's motion with
only a small number of degrees-of-freedom. By using this reduced number of
degrees ~of -freedom, the least-squares fitting process is kept to a minimum.
The first step in the two-step fitting process 1s the calculation of a
unique polynomial (equation 14) that represents the variation with s (as
defined by k) of each generalized force coefficient. This variation spans
the range of k represented in the 20 values of k from the doublet-lattice
calculations. Since the stability analyses here must find divergence (a
zero frequency instability) as well as flutter (a non-zero frequency
instability) the range of k needed for the Padé fitting begins at zero and
increases until it encompasses the expected flutter frequency. At this
point there are N x N denominator polynomials in the Padé Approximants.
This large number of denominators greatly complicates the stability

analyses in the Laplace domain and is not necessary.

As a second step in creating the Padé Approximants, the coefficients
of the denominator polynomials from the first least-squares fit are
averaged together to produce coefficients for a single polynomial. This
polynomial then serves as the common denominator for a new calculation of
the Padé Approximants. Each influence coefficient of the generalized
aerodynamic forces is approximated again for a second time by functions of
the form of equation 14. This second time the least-squares fitting of the
20 sets of aerodynamic forces is made with the denominator of each Padé
Approximant held constant to the common denominator. The results provide
generalized aerodynamic influence coefficients with unique numerators but
with a common denominator polynomial. The resulting matrix of polynomials

can be organized into an A matrix as shown in equation 22 for ease of

manipulation.
:
3... eos 3...
(PBIIS POII) (P31N9 POIN)W
1. * .
[A] = 6252*'615'*’1- ; . ; .
| Pans ™ Pony (P PONN)J (22)

L}

(1./(6252+6ls+1.)) [IP3]S3+[P2152+"'+[PO]]
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The generalized forces are now available for damped motion as described by

the transformed coordinates a1

la] - mfd] (23)

The quality of Padé Approximant representations of the generalized forces
can be measured by comparing generalized force terms calculated by the
approximations and those calculated directly using the doublet-lattice

method. "In Table 1, this comparison is made for two generalized force

e 1t e ¥ 3L,V T e T 2 AR TS s § e e T

i terms, All and XZZ’ at a series of reduced frequencies. This level of

N agreement is acceptable and found in all the generalized force terms. Not
only do the Padé Approximants agree well with other prediction methods for
sinusoidal motion, the wing equations of motion using the Padé Approximants
predict stability characteristics that agree well with those found by
experiments. In Appendix C, correlations are made with wind-tunnel model
experiments. Not only do these equations properly predict aeroelastic
flutter and divergence, but these equations also provide insight into the
explosiveness of a particular imstability. These model correlations
suggest that the methods used here can be used with some confidence.
Before improvements in stability using active feedback control can be
investigated however, control surface effects must be added to provide the

stabilizing forces.

Control Surface Aerodynamic Forces

In the previous section, the formulations for the aerodynamic forces
caused by general motions of the wing are described using Padé
Approximants. Added to these forces are those created by the deployment of

leading- and/or trailing-edge flaps. These control-surface forces will be

used to stabilize flutter and divergence, and the calculation of these
control-surface forces is described next. These control-surface
aerodynamic forces are calculated in similar ways to those forces resulting
from general lifting—surface motion. The exact relationship between the

flap deflections and the lifting-—surface motions will be defined in a later

.~“
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section by the control laws of the feedback circuits.
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Control surfaces for the forward-swept cantilever-wing configurations
are located on the trailing- and leading-edges of the wing tip as shown in
Figure 5. The deflection angles of ¢ and ¥ for the trailing- and
leading-edge flaps respectively measure positively about the hinge axis for
the aircraft's starboard side wing as shown in the section cut of Figure 5.
The control-surface influences on the wing's airloads are calculated using
the same set of aerodynamic influence coefficients from equation 18 as were
used for the wing motion. The control-surface motions prescribe downwash
velocity requirements similar to those defined by the general motion of the
wing. Forces on the wing due to control-surface deflections can then be
calculated by combining the downwash due to their deflection and the wing
influence coefficients 311° This wing downwash due to the control surfaces
is calculated as follows. At a control point j in the planform, the
downwash velocity, Wj, is calculated from the flow that is deflected by the
flap when it is rotated. This vertical velocity component of the flow is
created by the combination of deflection of the freestream flow with the

flap and the rotation of the control point about the flap's hinge line.

w, = Utand + éaj

i (24)

= Ug + BEj

A similar expression is used for the leading-edge flap, and the term EJ is
the radius from the flap's hinge line to the control point j. Since the
aerodynamic influence coefficients from the doublet-lattice computer
program are defined only for simple harmonic motion, the expression is

written in terms of the reduced frequency of sinusoidal flap motion.

€
"

Ud + iUédjk/b (25)

u(l. + iEjk/b)d

This downwash is determined for all doublet-lattice panels contained in the
planform regions of the flaps. In the flap region, the panels for the
cantilever wing examples are shown in Figure 4. The forces due to the
flaps can be calculated in a similar manner as that for general wing

motion.
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0
{m)f = [A])oO
flap wj(t)
0 (26)

The vector expression W contains the downwash specifications (equation 25)
for each control point in matrix form. The deflection angle has been
factored out to make equation 26 easier to combine with the feedback loops.
To be compatible with the equations of motion, the flap forces are
generalized into the modal coordinate system using the E matrix evaluated

at the quarter chord points of the panels.

;Q(ti = (] [xllwid
lap 1/4 chord (27)

Equation 27 provides generalized forces over the entire wing caused only by
flap oscillations at a reduced frequency k. Padé Approximants for these
generalized forces are then calculated using the sinusoidal forces from
equation 27 at each of the k values. These Padé Approximants are created
by the least-squares fitting described earlier. However, the fitting for
the control surface forces uses as a fixed denominator the one used for
approximations in equation 22. The resulting matrix equation for the flap
forces has a common-denominator polynomial in the Padé Approximants that
permits them to be easily combined with other aerodynamic forces in the

cantilever-wing equation of motion.

[ ( , \
Q, P3Ms +“'+POM
. . . )
<' $= ————-—< . b (28)
) 6 §+6 s+l .
- 2 1 : 3 .
th p3N¢$S + + PONQS) f1ap
/
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A similiar development provides generalized forces caused by the

leading-edge flap.

In the next section, the control laws are defined, relating the flap
angles to the measured motion of the wing. By properly selecting these
laws, the control surface forces just developed can be used to stabilize

both flutter and divergence of foward-swept cantilever wings.

Feedback Control Laws

In this dissertation, active control is applied to increase the speed
at which the aeroelastic instabilities occur. The stabilizing forces of
the active-control system are created by the aerodynamic-control surfaces
as they are activated according to measured wing motion. Feedback loops
contain the links (or control laws) between the flaps and the measured
elastic displacement, velocity, and/or acceleration used to activate the
flaps. The control laws can be written as equations containing constants
that represent simple gain amplifiers, where these amplifiers define linear
relationships between wing motion and flap deflection. When these
constants (or gain values) are properly chosen, the feedback loops
containing them are capable of stabilizing the aeroelastic responses of the

wing.

Figure 6 contains the block diagram for the wing feedback control
system. Equations relating the wing motion and forces acting on it have
been previously Jrveloped which include forces due to control-surface
motion. These force and motion relationships are contained in the transfer
functions of the wing or “plant” block. The wing block has input variables
as control surface dflections ¢ and ¥ and output variables as measured wing
motion at two spatial locations h1 and h2. The relationships between the

wing output and the actuator inputs are depicted in Figure 6 as the ﬁi

A
blocks for the control laws. The signal paths containing the ﬁij blocks
represent the feedback network for the wing aeroelastic stability

compens ation. The exact types of motion sensed at the two wing locations

are prescribed in the transfer functions H As measurement signals, the

ij°
feedback loops use the wings vertical (out-of-plane) motion. The

particular dynamics of a given type of sensor device measuring this motion
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are not included in the mathematical modeling of the feedback loop.
However, devices exist that could be used to provide the necessary
measurements , including strain guages, rate gyros, accelerometers, and
optical sensors., Nevertheless, only elastic motion of the cantilever wing
is measured. For applications of these control laws to actual flying
hardware, care is required to cancel out rigid-body motion or
control-surface inputs supplied by the pilot. The cancelling of these
unwanted measurements can be done using signals from rigid-body wmotion
sensors located near the aircraft's center-of-gravity, or various

low-freqency filters can be included in the feedback loops.

The measured elastic motions of the wing can be represented
mathematically at the sensor locations using equation 1, when it 1is
evaluated at the x,y locations for the sensors. In the matrix notation of
the transformed complex plane, the measured motion can be written in terums

of the natural modes and trans formed coordinates.

h(xl,yl) u‘(xl,yl) uN(xl,yl) a

- = \
h(x,,5,) uy(xy,y,) up(x9,¥,)

a (29)
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At these locations the velocities and accelerations are just the
derivatives of E(xl,yl) and E(xz,yz). In the transformed plane, these

motions are a function of s.

1

T

i =] B 555‘ (30)
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The transfer functions ﬁij using these wing-motion measurements are
polynomials of the variable s. The real coefficients Kijl of the

polynomials represent linear amplifiers. Their sign determines the sign

sense of the signal going to the flap actuators. Together they define the

fet TR < V. S e SO TR

actuator signal derived from measured elastic displacements, velocities,

>

and accelerations. Since the coefficients of s are constants, they are
equivalent to simple gain amplifiers that scale the measured displacements,
velocities, and accelerations. These measurements correspond to the powers

of s. An example of these functions, -ﬁél’ is given in equation 32.

Bty

- (X 2 (32)

+ sK dl)h

vé1 + s

dél

The notation uses for the gain values d, v, and a as subscripts for gains
associated with displaclements, velocities, and accelerations measured at
the sensor locations. This notation facilitates references to specific
gain values in the presentation of results. Thus, the actuator input
signal for the trailing-edge flap, 4, contains contributions from the
displacement fll, velocity s-ﬁl, and acceleration s Yll, measured at sensor
location 1. These measurements are relatively weighted by the gain

cons tants Kdél’ Kvél' and Kaél' Combining these transfer functions with

the sensor measurements provides the stabilizing flap angles 8 and 2 in the

modal coordinate systemn.

o1

Hsr Hgo| | Ba {3} (33)

B Hypd L E

=1

There is also an actuator block for the feedback loops of Figure 6. The

transfer function of this block defines the actual movement of the flap (¢

MR

MR
I
AR
LS
L

~

LY

for the trailing-edge flap) using the signal input to the flap actuator (¢-$
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for the trailing-edge flap). The transfer function used is given in

[

v v w -

equation 34 and represents that used for the F-16 flutter-suppression

studies of Reference 23.

-
.
i

L Py
¢ s + 20.

N
N
i

Note that the corner frequency for this actuator is 20 rad/sec and
represents reasonable capabilities in state~of-the-art electro-hydraulic
actuators. In addition to the flap angles resulting from equation 33, this
transfer function of the flap actuator must be included in the feedback

loops.

Applied to the cantilever wing, the stabilizing forces of the
feedback-control system can be calculated using the flap angles of equation
33 and the forces that result from them (in equation 28). The
actuator-transfer function must be included in the loops to represent
correctly the actual time-dependent deflection angle of the control

surfaces.

- n = - =
-, — . H, H E -
g H - 20 AL AL | g1 Beo || B H
X . R, H
s+20 41 By E, (35)
flaps
o
ﬁ' The stabilizing forces are then written as influence-coefficient matrices
of complex constants that are then post-multiplied by the wing's modal

displacement vector and its time derivatives. Now the stabilizing forces,
including the feedback loops, are compatible with the wing equations of
motion. When the gains in the ﬁij compensation block are properly
adjusted, the wing is more aeroelastically stable. To determine the

aeroelastic stability, the next section describes the solution method used

"

on the resulting cantilever wing's equations of motion. '
. \“
144
Stability Solution Method .:

The aeroelastic stability of the cantilever wing is determined from

the transformed equations of motion just described by subjecting the wing

to an impulse disturbance. With this type of disturbance, the system's ::

-
-
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stability can be described, using only the roots of the characteristic 8
equation obtained from the equations of motion (Ref. 24). These roots

specify the poles of the system's response in the complex plane and can be

found by identifying values that make the determinant of the characteristic

equation go to zero.

The stability of the lifting surface is indicated by the real parts
of these roots of the characteristic equation. As long as all of the roots
have negative real parts, stability is implied. Neutral stability is
acquired when any of their real parts go to zero. Negative stability (or
instability) occurs when any of the real parts of the roots of the
characteristic equation become positive. Changing parameters in the
equations of motion and thus the characteristic equation (such as an
increase in airspeed or an amplifier gain) causes changes in the roots. By
progressively changing one of these parameters, loci of the roots in the
complex plane can be developed corresponding to those parameter changes.
The root loci can then be used to calculate the parameter values that will
provide roots with the most desirable characteristics for wing stability,
Usually the optimum parameter values will result in roots with maximum
negative real parts. Later, in presenting results, the loci of these roots
(caused by parameter changes) in the complex plane are used to illustrate

the effects of parameter changes on the wing stability.

A direct method to calculate the characteristic roots can be used when
the Padé Approximants provide the aerodynamic-force formulation. The Padé
Approximancs allow the equations of motion to be written as a collection of
constant~coefficient matrices multiplied by the displacement vector and its
derivatives. When put in first-order form, the calculation of the roots

becomes a standard eigenvalue problem involving complex—constant matrices.

When the homogenous cantilever wing equations of motion are organized
in first-order form, the degrees—-of-freedom and their derivatives are
A
combined in a new vector 2. This vector contains states defined by the

degrees—of-freedom and their derivatives, up to the fourth time derivative.

This fourth derivative is dictated by the third-order denominator



polynomials in 8 found in the generalized forces. These polynomials are

created from the denominators of the Padé Approximants and that of the
actuator. When these are multiplied by the accelerations of the inertia

terms, a fifth derivative in time is created.

R /
a a
a a

™
"
[}
>
™
~H
e aml

a a (36)
a ‘a
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A
The A matrix contains only complex constants that include the terms of
mass, stiffness, feedback compensation, and aerodynamic force found in
their influence coefficient matrices. In the transformed plane, equation

36 exhibits the form for eigenvalue problems.

siﬁi - &) {5}

- (37)
A
[ [ﬁ] - s[I]]iﬁ} =0
The characteristic determinant for equation 37 becomes equation 38.
A
[A] - s[I]|=0 (38)

The roots s of this determinant (which are the eigenvalues of equation 38)

describe the stability of the cantilever wing.

The eigenvalue problem of equation 38 can be solved using exsisting
computer programs (Ref. 25) written for problems involving nonsymmetric
complex matrices. The mathematical bases for the computer routine used in
this research are outlined in Reference 26. The A matrix is first put in
Hessenberg form (equation 39) using a sequence of matrix reflection

operations called Householder's method.
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A series of similarity transformations in the QR-algorithm puts ﬁ in an

upper triangular form with the eigenvalues on the diagonal.

While freestream velocity and all the feedback gains must be fixed to
define completely ﬁ, the interval over which any of these parameters is
varied (to develop loci of the roots with that parameter change) is
completely arbitrary. Starting at zero velocity or zero feedback gain is
not required, and all the eigenvalues are calculated each time to avoid
overlooking a particular branch of the root loci. This is especially
useful for any fine tuning of feedback gains. To develop the loci of
characteristic roots caused by variations in a particular parameter (such
as flow velocity), a series of values of that parameter is chosen. The
number of parameter values and the intervals between them required to
construct root loci are dictated only by the parameter range of interest
and the ease in following the changes in eigenvalues. The recalculation of
ﬁ as that parameter is changed is simple and fast. The expensive and time
consumming aerodynamic force calculations using the doublet-lattice

procedure must be made only once and do not have to be repeated.

With the control surface forces and the feedback loops that drive them
included in the wing equations of motion, the study of improved aerocelastic
stability of forward sweep can begin. The following study focuses on two
wing examples that illustrate possible applications of active control for

forward sweep aeroelastic instabilities. In this next chapter the two wing

41

e e e,
<y Cy %y 3 e

Vo

r
do el

e




e AT,

rre

examples are examined with 96 possible feedback loops. Several show

promise of improvement in wing stability. Two of these feedback loops are

examined in detail.
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III - WING ACTIVE CONTROL STUDIES

In this chapter, the application of active controls to forward-sweep
is illustrated with two forward-swept wing examples. The goal is to
improve their flutter and divergence characteristics. A gain-parameter
root-locus for each combination of control surface, sensor, and gain sign
is calculated. These loci are used to determine the best feedback loops
for the improvement of flutter and divergence. Several plots of these root
loci are included to illustrate the effects of particular gain changes.
Associated velocity root loci are also presented to show the improvements
or losses in stability for selected feedback loops. The results show that
even with the small flaps used here, active control can improve aeroelastic

stability.

The cantilever wings used as examples are derived from a single
forward-swept configuraton. This wing configuration is representative of
the first generation of forward-swept wing designs in the high g fighter
category. The basic geometry is derived from example designs in Reference
6. This geometry was chosen to make the application studies of this
research reprsentative in weight and basic geometry of actual flight
hardware. The two wing examples use the same external geometry as shown in
Figure 3. These wings are designed for an 18000 pound aircraft performing
an 8g symmetric pullup at .9 Mach number at sea level altitude. The flow
condition used in the doublet-lattice analysis for the Padé Approximants is
.9 Mach number at sea level. However a match-point analysis is not
performed for the critical airspeeds calculated in the following examples.
This match-point analysis would correct the critical velocities to the
proper Mach number and altitude. The match-point analysis would be
included in the detailed calculations made when these control laws are

applied to actual hardware.

The active control system uses one or both outboard flaps shown in

Figure 3. The hinge lines are at the 157 and 83X chord lines. The 15%
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chord line 1s the leading-edge spar location for the wing's structural box.
This location is necessary for attachment of the actuators and hinges. The
aft hinge line 1s half way between the structural box's trailing-edge and
the planform trailing-edge. This hinge line was chosen so that the
trailing-edge flap would be approximately the same size as the leading-edge
flap. The control surfaces are used in several combinations, prescribed in
four different configurations. Configuration A uses only the trailing-edge
flap. Configuration B use only the leading-edge flap. Configuration C
provides equal deflection of both the leading-edge flap and the
trailing-edge flap. Configuration D provides for a positive deflection for
the trailing-edge flap and an equal but negative deflection for the
leading—-edge flap. Using these last two control surface configurations,
the desirability can be examined of a control force that resembles either
an aerodynamic torque (Configuration C) or an aerodynamic plunge force

(Configuration D).

The wing-motion sensors are located on the periphery of the structural
box at its mid-plane in depth. One location is the junction of the tip rib
and leading-edge spar for the wing box. The other location is on the
trailing-edge spar directly downstream from the first location. Figure 7
shows these locations on the wing planform. Like the control surfaces, the
sensors are used in four configurations. The sensor of Configuration A
produces signals only from the trailing-edge location. Sensor B produces
signals only from the leading-edge location. Sensor C adds the signals
from the leading-edge and trailing-edge locations. Sensor D subtracts the
signal of the leading-edge location from that of the trailing-edge
location. The first two configurations yield sensor signals from locations
near the control surfaces. The latter two configurations yield signals
that represent primarily plunge motion (Sensor C) or pitch motion (Sensor
D) at the span station of the sensors. However, configurations C and D are
not intended to selectively recover a particular vibration mode from the
wing response, as has been done in some active-control investigations (Ref.
27). 1In fact, a major concern that suggests these latter two sensor

configurations is avoidance of single-sensor locations at node lines of the
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low-frequency modes. 3Sensors C and D better ensure the observability of

all modes.

Three kinds of sensors can be used with any of the location
configurations. These sensors would be displacement, velocity, or
acceleration-measuring instruments. The kind chosen for each feedback loop
dictates the control law used. The measurement signals provided by the
sensors are scaled by linear amplifiers (gain constants) and directly input
to the flap actuators. No other signal processing is done, such as

differentiation or integration of the sensor signal.

The different combinations of configurations in sensor location and
flap are examined with a gain-parameter root locus, using each kind of
sensor. The root loci are calculated using both negative and positive
feedback. For a given wing box design then, 32 possible combinations (4
sensor configurations, 4 flap configurations, and 2 signs for gain values)
of feedback circuits are examined. These gain-parameter root loci are
calculated at a fixed speed that corresponds to the most critical
instability. Using the gain-parameter root loci, gain values are chosen
for wing stability improvements based on improvement in the characteristic
root locations. The gain values showing promise are checked using velocity
root loci with these feedback gains in the feedback loops. Each of the 32
gain-parameter root loci is used with the displacement, velocity, and
acceleration sensors to provide a total of 96 possible feedback loops for a

given wing example case.

Two different wing structural-box designs, designated Case 1 and Case
2, are used for the wing feedback-control examples. The structures in
these wings are devised to produce different relative airspeeds for the
aeroelastic instabilities. The Case 1 example uses a wing box
acroelastically tailored to have its divergence airspeed Ud at a lower

value than for flutter Uf. The Case 2 design has the relationship of Ud

and Uf reversed. But the two cases are identical in external contours,

flap locations, sensor locations, and non-structural mass distributions.
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Using aeroelastic tailoring of the thickness and fiber directions in the
composite upper and lower wing-box covers, the flutter and divergence
airspeeds were brought within 400 ft/sec of one another. Effort was made
in both cases to have flutter and divergence airspeeds relatively close
together. This similarity of airspeeds permits monitoring of the positive
or negative effects on a secondary aeroelastic instability while attempting
the control of the most critical aeroelastic instability. While flutter
and divergence usually have widely separate critical airspeeds, the close
proximity in aeroelastic instabilities of these examples can occur in
actual aircraft designs when using automated design techniques that employ
optimization alogorithms. These automated techniques closely balance
various design requirements while minimizing structural weight. This
balance often specifies both Ud and Uf as being just outside the aircraft

operating envelope.

The results for the stability study are presented in graphical form
using root loci plots. These loci trace the movement of the characteristic
roots in the complex plane. As a selected parameter is changed, such as an
amplifier gain or freestream airspeed, the characteristic roots of the wing
equations of motion also change. The loci of these roots provide a
graphical way of interpreting the effects a parameter change can have on
wing stability. The figures in this chapter show only the upper left-hand
portion of the complex plane. Only the upper portion must be shown because 4
the complex conjugate property of the characteristic roots make the upper lj
and lower portions symmetric about the real axis. Only the left half-plane 1
is shown because the subcritical root values are of prime importance.

Thus, only the negative (sub-critical) values of the real parts of the
characteristic roots need be plotted. The root loci plots present either

velocity or gain parameter changes.

The velocity root loci describe the root movements as the freestream
airspeed of the wing increases. All other wing parameters are held
constant. When a wing root displays a left-to-right crossing of the
imaginary axis, the damping of that root has changed from positive to

negative. The airspeed corresponding to this change is the critical
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velocity for stability. Similar loci can be shown for changes in a gain
value rather than freestream velocity. These plots can be useful in
determining gain values that indicate large damping values. Gain settings

that provide large negative real parts for all of the roots usually

AR AR AV Al 1Moy

increase wing stability.

Feedback control design using the root locus methods is an older
“classical” technique. More modern methods that automate the search for
optimum gain settings could be used. However, one of the goals of this

research is to develop some basic understanding of the effects that

particular active control laws can have. This can be observed better with
the individual parameter gain root locus methods rather than modern optimal
control methods. Therefore, the following case studies use only the

classical root locus approach,

Case 1 Study

f
locus for Case 1 with no active control present. The origin of each locus

This wing design has Uy lower than U.. Figure 8 is the velocity root

is the zero velocity condition and is found on the imaginary axis. The
imaginary parts of these origin points correspond to the natural

frequencies of the vacuum vibration modes for Case 1. The first four roots

show the vacuum vibration frequencies for mode 1 at 5.21 rad/sec, mode 2 at
23.22 rad/sec, mode 3 at 27.67 rad/sec, and mode 4 at 58.32 rad/sec. The
shapes of the loci for these modes fall into the expected classical
categories for high aspect-ratio wing structures. Mode ! can be described
as a first-bending mode shape. Mode 2 is a second-bending mode. Mode 3 is

the first-torsion mode. Mode 4 is the third-bending mode.

As the velocity is increased from 0 to 2200 ft/sec, the critical
divergence and flutter airspeeds are identified. The mode 1 root defines
the divergence velocity as this root crosses the imaginary axis. This
crossing occurs at a freestream airspeed of 1161 ft/sec. Roots at the
divergence velocity are noted in all the root loci by the solid round

symbol. In both wing examples, the first-bending mode corresponds to the
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lowest-frequency vibration mode, and the eigenvector (or wing deformation
shape) of the divergence condition closely resembles the first bending

mode.

The most critical flutter airspeed is defined when the mode 3 locus
crosses the imaginary axis at a freestream alrspeed of 1560 ft/sec. Roots
at the freestream velocity of flutter are noted on all loci with the solid
square symbol. As in all other examples, the critical flutter airspeed is
defined when the root corresponding to the lowest-frequency torsional mode

crosses the imagnary axis.

The higher frequency modes continuously gain damping as velocity 1is
increased, with no tendency to return to the imaginary axis and define
other aeroelastic instabilities. For all stabilitiy calculations (unless
specifically noted otherwise), the basis for the calculations is the first
four vibration modes. For Case 1, the locus of mode 4 always gained
damping with airspeed and produced nothing more than a progressively higher
damped response. For this reason, this mode is not plotted. The following
results show the effects that the addition of active control has on Case 1,
and are organized according to the kind of sensor used in the feedback

loops.

Displacement Sensing

Active control, using displacement sensing, is the first type of
compensation presented, and is examined for all 32 combinations of sensor,
flap, and gain signs. Several gain root locl are presented to illustrate

the effect of this kind of feedback.

All of the gain root loci (for positive feedback using
elastic-displacement sensing) show significant degradation in the stability
of the divergence critical root. 1In this study, positive displacement
feedback cannot be used to improve the divergence airspeed for the
combinations of signal sense in displacement measurements and flap
deflection angles. Even very small values of positive-displacement sensing

cause the divergence critical mode 1 root to go unstable.
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Negative-displacement sensing is successful in improving the critical
divergence airspeed. The gain-parameter root locus plots for this feedback
exhibit three general patterns. The root-loci patterns are characterized
by interaction between the divergence critical roots of the first mode and

the root from the control surface actuator.

With the addition of the feedback loop to Case 1, a set of four
characteristic roots appears, in addition to those of the structure and
aerodynamics. These four roots are all located at the 20 sec--l position
(in an overlaid fashion) on the real axis of the complex plane and are due
to the denominator of the actuator. As the gain parameter is changed from
zero to large negative values, one of these four control roots moves in a
positive direction. At the same time, the critical divergence root moves
in a negative real direction. This increase in the damping of the critical
divergence root delays the onset of divergence to a higher airspeed. The
movement of the other roots in the root locus defines the different

patterns discussed below.

In Figure 9, the first pattern (of three patterns) in the root loci is
seen, resulting from gain changes with displacement sensing. The
critical divergence root and control root coalesce to form a complex
conjugate pair. This complex pair defines a flutter instability, and
involves the root that had defined a divergence instability before
application of active control. In this complex pair, the higher modes show
little movement with increased gain. The second pattern is illustrated in
Figure 10 and differs from the first in that mode 2 quickly goes unstable
in flutter. The third pattern has the conjugate roots from mode 1 and the
control surface remaining stable. Figure 11 shows an example of this
pattern. Here increased negative gain forces mode 3 to move towards
instability. This third root-locus pattern corresponds to the best
improvement in divergence with active control. It is accomplished wusing

wing-displacement sensing.
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Figures 12 through 16 show a series of velocity root loci using the
Sensor D/Flap B configuration. The loci are calculated using a different
gain level for each figure. The root locations calculated at three of
these gain values are noted on the gain-parameter root locus of Figure 11,
Velocity root loci for these different gain levels are shown in Figures
12-14. With the Sensor D/Flap B combination, a gain of -3 rad/ft produces
the velocity root locus of Figure 12. 1In Figure 12, the velocity at
divergence increases to 1345 ft/sec while the velocity at flutter drops to
1480 ft/sec. At this gain level mode 1 moves to the real axis before
crossing the imaginary axis. When the gain is increased to -6 rad/ft, as
in Figure 13, the critical velocities are equal (1448 ft/sec) for the
crossings of mode 3 (for flutter) and mode 1 (for divergence). As the gain
is further increased to -9 rad/ft, the break-in point for the roots of mode
1 move to the positive side of the real axis. Therefore, as shown in
Figure 14, mode ] now prescribes a secondary flutter instability rather
than divergence. But the most critical flutter instability is still

defined by mode 3. However, it now crosses at an even lower velocity of
1389 ft/sec.

When displacement sensing is used in Case 1, the -6 rad/sec gain value
provides the best improvement in velocity of the-most critical aeroelastic
instability. Raising the divergence velocity is accomplished, however, at
the expense of lowering the most critical flutter velocity. This trade in
critical velocities suggests that large increases in divergence speed for
Case 1 might be possible if the flutter velocity had been much higher.
Fortunately, high flutter velocities are typical in the forward-sweep

designs using conventional materials, as suggested by Figure 1.

The velocity root loci in Figures 15 and 16 show the results of
further increases in gain. When the negative gain is further increased,
the flutter speed continues to drop. When the gain reaches -15.5 rad/ft,
mode ] does not go unstable at all, but mode 3 indicates a still lower

critical velocity for flutter at 1316 ft/sec.
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Kd = -15.5 rad/ft

Sensor D/Flap B




The previous root loci plots used a basis of four modes. To check the
sensitivity of all the analyses to the number of modes used as a basis,
both in describing the essential responses of the wing and in the Padé

fitting process, a new stability calculation is made. This time 10 modes

are used rather than 4. The gain Ky is again set at -6 rad/sec in the

Sensor D/Flap B configuration. /Using 10 modes as the basis, the flutter
and divergence speed are calculated to be 1432 ft/sec, a change of only 1X.
Figure 17 shows this root locus. Since the 10 mode velocity root locus did
not significantly deviate from the 4 mode velocity root locus, the
four-mode analyses used for the gain-parameter root loci are considered to
be valid, and the sensitivity of the calculations to the basis size is

small, at least for Case 1.

Velocity Sensing

The second kind of sensor investigated measures vertical velocities
rather than displacements. The same feedback loops, types of gain, flap
configurations, and sensor configurations are used with the velocity
sensors as are used with the displacement sensors. A similar set of
gain-parameter root loci is calculated in search of the best

velocity-sensing feedback loops.

Depending on the sign of the gain amplifier, two basic root-loci
patterns emerge for velocity sensing in Case 1. These patterns are
illustrated in Figures 18 and 19. Using positive feedback, Figure 18 shows
the divergence critical root of mode 1 combining with the control (or
actuator) root. For even small values of positive gain, this combination
becomes unstable. Some loss of stability in mode 2 is also noted. Figure
19 indicates that negative feedback causes the control root to combine with
the most stable root of the mode 1 pair after they reach the real axis.

The other root of the mode 1 pair that is close to the imaginary axis

(divergence critical) shows little movement with changes in gain setting.

Neither positive nor negative feedhack of the velocity sensors changes

the critical divergence speed, no matter what gains are used. However, the
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flutter speed can be increased or decreased considerably using velocity
feedback. Examples of these changes can be seen in Figures 20 and 21. 1In
Figure 20, a positive gain of .4 rad sec/ft increases the flutter speed to
1660 ft/sec, but divergence is still at 1160 ft/sec. In Figure 21, the
gain 1s increased further to 2.6 rad sec/ft. 1In this case, mode ] now
defines flutter at only 661 ft/sec. The airspeed, corresponding to a root
crossing of the imaginary axis on the real axis, is still 1160 ft/sec.
This airspeed is the same speed as Ud for the uncompensated wing, but the

axis crossing is now from negative damping to positive damping.

Acceleration Sensing

Using the cantilever wing, the third kind of sensor measures
accelerations at the sensor locations. The same combinations of flap,
gain, and sensor location are used for accelerations as those used for the
displacement and velocity calculations. When acceleration sensors are used
(as with the velocity sensors), little effect is seen on the critical
divergence condition. There is some effect, however, on the critical

flutter airspeed.

Using the Sensor A/Flap B configuration, Figures 22 and 23 demonstrate
acceleration sensing's lack of effect on divergence. In Figure 22, the
parameter—gain root locus of Sensor A/Flap B show the actuator root
combining with the most stable of the mode ] roots. These roots then go
unstable as conjugate pairs. When the gain is increased further, this
conjugate pair breaks in on the real axis on the positive side. One of the
pair then moves back towards the original divergence-critical mode 1 root
that has not moved with gain change. In this same plot, the higher modes
of the Sensor A/Flap B configuration lose stability. Figure 23 shows the
velocity root loci of Sensor A/Flap B when acceleration sensing is used in
the feedback loop. Even though the sub-critical response of all the modes
has changed and the flutter speed has been significantly lowered, the mode

1 divergence condition still occurs at 1160 ft/sec.
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Summary of Case 1 Results

The results of the application of feedback control to this
divergence-critical wing example are summarized as follows. To increase
the airspeed at which aeroelastic divergence occurs, the use of velocity or
acceleration sensing 1s unsuccessful. Only elastic-displacement sensing
with negative feedback produces a significant increase in the divergence
airspeed. The use of any of the three kinds of sensors changes the loci
(and thus the subcritical response) of all roots. The velocity and root
participation of the most critical flutter instabilities are also affected.
The feedback-control configuration that most improved divergence also

significantly lowered the critical flutter velocity.

The most success in suppressing divergence occurs when the roots
defining divergence can be modified to increase the critical airspeed for
divergence until that airspeed just reaches the value of the most critical
secondary aeroelastic instability of flutter. The feedback configuration
that improves Case 1 the most is the combination of Flap B and Sensor D.
This flap and sensor combination (with negative feedback) suggested that
the mechanism most effective in improving divergence is a reduction in the
apparent lift-curve slope of the outboard section of the wing. The
location and relative signal signs of the sensors for the Sensor D ‘i
configuration provide feedback signals that emphasize movements *
corresponding to increases in the section's angle-of-attack. Movement of !¥
Flap B tends to change the apparent angle-of-attack of the outboard wing .
sections. When negative feedback is used, the flap tends to lower the ]
local angle-of-attack as the wing box section increases in angle-of-attack. .
The control effect on the wing's capability to produce lift can be Ii
summarized as a reduction in the apparent lift-curve slope of the outboard

portion of the wing. This trend in lift-curve slope also agrees with those

1
1
. 4
“d

found in simple airfoil examples (Ref. 2).

Case 2 Study
For the example wing in Case 2, Uf is lower than Ud. The external

geometry for Case 2 is the same as that used in Case 1, but the structural

LI .

70
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wing box has been tailored to make U_ lower than U,, providing a

f d
contrasting example to that of Case 1. Mode ] is the first wing-bending
mode, with a frequency of 5.09 rad/sec. Mode 2 is the first torsional

mode, with a frequency of 19.75 rad/sec. Mode 3 is the second bending mode

:

at 25.32 rad/sec. Mode 4 is the second torsion mode at 47.75 rad/sec. For
reference, recall that the first torsion mode of Case 1 is mode 3 (rather
than mode 2 for Case 2). Also mode 3 of Case 1 has a higher vacuum
vibration frequency than that found in mode 2 of Case 2. These differences s
in their torsion modes correspond to the lower U. found in Case 2 versus -

f
Case 1.

At the aeroelastic instabilities for Case 2, the velocities are shown
in the velocity root locus of Figure 24. 1In this root locus, a flutter
instability is predicted from the crossing of the imaginary axis by mode 2
at a freestream airspeed of 960 ft/sec. The divergence condition is again
predicted by the mode 1 crossing (with no imaginary part) at a velocity of
1281 ft/sec. Note that the mode 1 break-in point is much more negative
than that found in Case 1 and occurs to the left of the visable range of
the negative real axis shown in Figure 24. Mode 3 also shows some loss of
damping when the velocities reach the higher values. The other modes

merely gain damping with airspeed.

Displacement Sensing

The sixteen combinations of sensor and flap are again used to examine
displacement sensing. The airspeed used for gain-parameter root loci is
960 ft/sec, except for some specifically noted examples. Based on the
effect in the divergence speed of Case 1, positive gain is not examined for
Case 2 when using displacement sensing. Therefore, only negative-feedback

examples are discussed for Case 2 when displacement sensing is used.

Negative gain applied to displacement sensing of Case 2 provides three
basic shapes for the pain-parameter root loci calculated. 1In the first
form, mode 2 and the control root go unstable. The second form differs

from the first in that the mode | and mode 2 roots go unstable while the
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control root gains stability. In the third form, mode 2 increases in

stability while the control root loses stability.

In Figure 25, the second form in gain-parameter root loci is
exhibited. The feedback configuration uses the Sensor A/Flap B
combination. Velocity root loci are calculated using two significantly
different gain values with this flap and sensor configuration. With a
small gain value of -.05 rad/ft, the velocity root loci of Figure 26 show
only slight improvements in the flutter- and divergence-critical
velocities. When the gain is changed to -15.55 rad/ft, a considerable
improvement is made in the divergence-critical roots of mode 1. This
velocity root loci is plotted in Figure 27. However, flutter now occurs at
a much lower velocity, 610 ft/sec, and is defined by roots of mode 1 rather
than of mode 2. With this feedback loop, the divergence instability is not
indicated. In Figure 28, the possibility of a useful intermediate value of
gain is examined for the Sensor A/Flap B configuration, a gain of -1.
rad/ft. The flutter-critical mode 2 roots remain essentially unchanged,
but the divergence condition from the mode 1 roots never materializes. The

mode 1 roots remain oscillatory and gain damping.

It should be noted that another approach can be employed when using
gain-parameter root loci to define gain values and desirable sensor/flap
combinations. The root loci can be calculated at freestream flow
velocities higher than the lowest critical velocity. A single example of
this approach for the Case 2 wing is shown in Figure 29. The freestream
velocity is 1160 ft/sec for this gain root loci. Therefore, the roots of

mode 2 (which crossed the imaginary axis at 960 ft/sec) are well into the

negative damping region of the complex plane. These root loci for the

Sensor D/Flap A configuration suggest it is capable of moving the mode 2
flutter roots back into the positive-damping region. However, when the
velocity root loci are calculated using this control law the control root
becomes unstable before these flutter roots become stable. In general,
using a flow velocity that is higher than the most critical flow velocity

{when calculatiag a gain-parameter root locus) was not useful. This lack
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of success results, in part, from the non-linear effect of velocity that is

Bt

a consequence of the powers of the s parameters. Therefore all other

KA
Y WL

gain-parameter root loci shown for Case 2 are calculated using a freestream

airspeed of 960 ft/sec.

For Case 2, no feedback-control loop using displacement sensing
improves the most critical aeroelastic instability to a useful degree. As

in Case 1, displacement sensing affects divergence but is not helpful in

P T T T 7 WYY . s Y YV V.T.ToTJEm 8 v T
| AR
a. N

improving flutter.

Velocity Sensing

For the Case 2 wing, velocity sensing is examined for both positive :j
and negative feedback. All gain-parameter root loci are calculated using a
freestream flow velocity of 960 ft/sec, with several patterns of root loci !
emerging. These patterns generally show that negative feedback improves

the stability of the actuator root, while positive feedback does not.

Typical of the first pattern is the rapid decrease in stability of the ‘
roots of mode 1, while the control root moves in a stable direction. In a .
second pattern (with negative feedback), the mode 2 root becomes unstable
at low negative gain values. Mode ] shows some loss of stability in this
second pattern, but does remain stable. The control root also remains R
stable. The third pattern is similar to the second pattern except that
positive feedback moves the control root toward instability. Pattern four g
provides improved stabilities for the mode 2 roots, but causes both thev .
mode 1 roots and the control root to lose stability. The loss of stability I
by the control root, however, is gradual. Significant improvements in the
stability of the mode 2 roots is possible before the control root goes
unstable. A good example of this last pattern is shown in Figure 30. Here
the gain-parameter root locus of the Sensor D/Flap D configuration suggest |
that a positive gain of .15 rad sec/ft can be useful. At this gain
setting, about equal trades can be made in stability of the roots of mode !
and mode 2. For aeroelastic instabilities, this gain setting would allow a

similar trade in airspeeds to that made in the Case 1 divergence solution. '
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Using a gain of .15 rad sec/ft, a velocity root locus for Sensor D/Flap D
is calculated in Figure 31. Note that while the flutter velocity moved
from 960 ft/sec to 1110 ft/sec (at the expense of some loss in divergence
airspeed), the improvement does not result in a significant improvement in
flutter. This lack of significant improvement is typical of improvements
available for the velocity-sensing feedback loops for Case 2, and,

therefore, velocity sensing is not really useful for Case 2.

Acceleration Sensing

Acceleration sensing provides several useful feedback loops for
stabilizing the roots of mode 2. In Figure 32, the gain-parameter root
loci for Sensor D/Flap A are plotted. Here the negative feedback from the
Sensor D combination is increased, and the roots of mode 2 move away from
the imaginary axis toward increased stability. At the same time, the roots
of modes 1 and 3 lose stability. With the gain set at -.05 rad seczlft, a
velocity root locus (using Sensor D/Flap A) is calculated and presented in
Figure 33. Note that while the roots of mode 2 come close to the imaginary
axis, no crossing (and, therefore, flutter) occurs. The divergence
instability still occurs at 1280 ft/sec and cannot be improved with any of
the gain settings. This divergence airspeed then becomes the limit to the
amount of improvement in airspeed possible with acceleration sensing in the

Sensor D/Flap A combination.

Other feedback configurations offer possibilities for improving the
flutter-critical roots of mode 2. Using Sensor D, positive gain can _
improve mode 2 when either Flaps C or D are employed. With negative gain,
Sensor D can be coupled to Flap B. The gain sign change is required for
Sensor D/Flap B because of the angle sense of the leading-edge flap
deflection. These other flap and sensor combinations, however, do not give
improvements in the divergence condition. Therefore, the maximum
improvement to the most critical aerocelastic instability remains at the
1280 ft/sec level. This maximum value is defined by the unchanged airspeed
of divergence and not by limitations on the effect possible of the

flutter-critical mode 2 roots.
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This limitation on improvements for Case 2, resulting from a low-speed
divergence condition, does not suggest similar limitations on wings with
more conventional velocity spacing between flutter and diveregence. The
improvements in flutter for any wing design, however, must not be sensitive
to small changes in the analysis. As a check on analysis sensitivity,
changes are made in the number of vibration modes used as coordinates in
the root loci calculations, and the Sensor D/Flap A configuration is
re-calculated using a 10-mode basis. This re-calculation is presented in
Figure 34. Note that unlike the calculations made with the 4-mode basis,
the roots of mode 4 move far enough over to the imaginary axis to touch it.
This condition indicates a potential problem for the feedback loop using
Sensor D/Flap A. It appears a new low-speed flutter condition has been

created using the feedback loop and involving mode 4.

The sensitivity problem just shown may be caused by two possibilities.
First, as more modes are included in the basis for the calculations, the
number of generalized forces increases, and the frequency range widens that
must be spanned by the Padé Approximants. Since the polynomials do not
change order, they must represent more information with the same number of
terms. Secondly, in Case 2, mode 4 is the second torsion mode rather than
another bending mode, as in Case ], Modes with dominant torisional motion
define flutter instabilities in all the root locus calculations. With two
low-frequency modes capable of producing flutter, Case 2 has greater

potential for creation of secondary flutter modes with active control.

Summary of Case 2 Results

Application of feedback control to Case 2 indicated that acceleration
sensing is the most useful type of measurement for forward-swept wings that
are flutter critical. The successful Sensor D configuration suggests that ';
the pitch-angle acceleration of the outboard portion of the wing provides a !l
useful signal for active control of flutter. Again, the limitation in

improvement in velocity of the most critical aeroelastic instability (in

this case, flutter) is the secondary instability (in this case,

divergence). Fortunately, acceleration sensing does not affect divergence
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instabilities. Thus, the available improvement in overall stability for
Case 2 is defined by how high Ud can be made in the uncompensated wing

design.

The calculations of flutter critical wings also indicate that more
care must be taken to ensure that all possible flutter modes from the
higher modes are accounted for. Unlike divergence (which appears to be a
function only of the first wing bending mode), flutter can be defined by
modes other than just the first torsion mode, and these higher torsion
modes can also produce flutter instabilities. 1If these higher torsion
modes have frequencies low enough so that the flap actuators can respond to
them, these modes must be monitored carefully in the analyses. They must
not be destabilized by the feedback loops aimed at a flutter condition
caused by a lower frequency mode. If flutter from higher modes cannot be
avoided, high frequency filters may be required to prevent these higher

modes from going unstable at low airspeeds.

These examples of active control applications using the Case ] and
Case 2 wing designs are ment to suggest potential for active control of
aeroelastic instabilities. Actual forward-swept wing applications could
demonstrate even larger improvements in critical airspeeds, especially for
divergence. This can happen since forward-swept wings usually have very
high values for Uf even without feedback compensation. The actual
stability improvements will depend on the details of each application.
However some general observations and conclusions of active control for-

forward-swept wing aeroelasticity can be made and follow in the next

chapter.
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IV -~ CONCLUSIONS

The results of the cantilever wing examples suggest that active

N control can be used to increase the critical airspeeds of flutter and
divergence in forward-swept wings. In order to determine the exact

e increases in these critical airspeeds that is available using active

. control, a match-point analysis would be required to match critical

. airspeeds with their correct Mach number and altitude. This is not domne

’ here because that level of detail is not needed to determine the trends
sought in this research. Consistant with this approach, improvements of

- 25% in Ud for one example and 30% in Uf are made for another example of

S cantilever forward-swept wing designs. These improvements would be even

' greater if the secondary aeroelastic instabilities had higher critical

airspeeds. They limited the improvement because as the critical airspeeds

for the primary (most critical) instabilities are increased to large values

. with active control, the secondary instabilities then determine the most
critical airspeeds for the wings. Unfortunately, the critical airspeed for

" the secondary instability is shown in one example to decrease at the same

A tipme that the airspeed of the primary instability increases. In Case 1, Uf

drops severely as Ud increases, with the application of active controls.
However, if active controls were applied to a forward-swept wing of
conventional construction this loss in flutter speed could be tolerated.

- The secondary instability of flutter has shown to be high without active
control for forward-swept wings of conventional construction. Therefore,

. with application of feedback control, the critical airspeed for flutter
could drop considerably, in trade for increases in the critical airspeed
for divergence. By improving this divergence instability active controls
can make metal construction of forward-swept wings feasible. This same
argument can also be applied to conventional (non-aeroelastically tailored)

composite wing construction.

};“v') KhEide!

The trade in improvement of Ud at the expense of a lower U_ suggests a

f
possible modification of current optimal design logic for designs that will
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use active control for aeroelastic instabilities. Typically, optimal
design methods (especially those automated on digital computers) attempt to
hold the wing's structural weight to a minimum, while moving all
aeroelastic failure mechanisms outside the wing's performance envelope.
This design optimum is useful for wings that do not employ active control
for aeroelasticity. It does however tend to produce designs in forward

sweep that have Ud and U, close together and just outside the operating

envelope of the aircraftf This optimum criteria may not always be the most
useful for wing designs that incorporate active control for divergence
instabilities. Since no control law, using any combination of sensor and
flap configuration, could be found to improve both flutter and divergence
at the same time, a different design optimum may be more useful for
forward-swept wings. Techniques (such as aeroelastic tailoring for a
composite wing structure) may provide better candidate designs for active
control of divergence if the optimal design procedure focuses on providing
extremely high airspeeds for flutter. Then active control would be focused
on divergence. A drop in the critical airspeed for flutter could then be

tolerated if necessary as active control provides the necessary increases

in divergence airspeed.

Since divergence is a static aeroelastic instability, it should be
expected that displacement feedback provides the only successful
active-control suppression of divergence. Unfortunately divergence
suppression could not at same time be successfully combined with flutter
suppression to compensate a wing that had low values of both Ud and Ufﬂ
The feedback solution for one instability tended to disable the feedback
compensation for the other instability. This lack of compatibility
between divergeuce and flutter compensation suggests that applications of
optimal control techniques (that use full-state feedback) could have
difficulty with wings that have unacceptable values for both Ud and Uf.

Some insight can be gained from these examples into the best locations
for sensors and control surfaces to improve the divergence instabilities of

forward sweep. For divergence, sensor locations and signal combinations
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that provide angle-of-attack information appear to be the most useful.
Consequently signal differencing between sensors located streamwise is
desirable for divergence compensation. For flutter however, accelerometer
locations strongly depend on the wing dynamic responses of each particular
application. Therefore optimum locations for sensors used in flutter
compensation cannot be suggested for all wing designs using just these
examples. When considering control surface configurations, the best flap
locations for divergence suppression should be near the wing tips. The
leading edge provides great influence for a flap of small size on the
pressure distributions of a forward-swept wing. Thus the leading-edge tip
region appears to be the best location for control surfaces that must
stabilize divergence. The best flap locations for flutter suppression of
forward sweep on the other hand requires further study. Again the dynamic
responses that contribute to the flutter mechanism depend heavely on the
particular characteristics of each wing design. locations of node lines
and maximum amplitude areas for the vibration modes usually dictate the

best locations for the flaps providing flutter suppression.

While developing promising active control compensation for
aeroelasticity, improvements were also made in the methods for calculating
aeroelastic stability. Based on the airfoil stability results, a Padé
Approximant aerodynamic-force formulation was used for the damped motion of
the cantilever wings and contributed to very good stability predictions.
The key modification to the formulation of the Padé Approximants is the
common denominator. When the averaging of the denominators is used, the
additional roots in the stability analyses (introduced by aerodynamics) are
held to a minimum, and none of these "aerodynamic™ roots have positive real
parts. Thus, the Padé Approximants did not confuse the determination of

structural stability using the structural roots with an unacceptable number
experimental force data from damped lifting surface motion are measured and

made available for correlation new insight may then be gained leading to

of "extra” roots from the aerodynamic approximations. Now when good !
1
N
3
b
better functions for aerodynamic approximations. These data are especially i

needed for control surface motion. A prime candidate would be fractional
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orders of s similar to those used by Bagley for viscoelastic materials
(Ref. 31). The fractional orders of his method are suggested
aerodynamically by the Bessel functions in the doublet-lattice sinusoidal
solution used as the basis for the Padé Approximants. The polynomials used

in this dissertation, however, are very easy to include in the transformed

g a4 0 4 2y GEEEN T 37 F.VLTONERETL - v T

equations of motion. Also their agreement with known experiments are so
good that the solution difficulties when calculating wing stability using
other approximating functions may far outweigh improvements new functions

could offer in stability predictions.

There were also some consistant trends observed in the root locus
plots that may be useful whether active control is considered or not. The
root loci for all the uncompensated airfoils and cantilever wings suggest
that roots associated with the first bending or plunge mode will always
define divergence. A similar observation can be made for flutter. The
root associated with the lowest vacuum frequency torsion mode defines
flutter as long as there is no active control present. The divergence
result stems logically from the great similarity between a wing's
deflection shape at divergence and its first bending mode. The equivalent
association of flutter with the lowest torsion mode is not as clear. Since
flutter of cantilever wings can be obtained using only the
degrees-of -freedom associated with the modes of first torsion and first
bending (Ref. 2), it would seem that there should be some flutter examples
that are deifined by loci associated with the bending modes of vibration.

No example of this flutter can be found in these cases, however.

In summary, successful applications are made here of active control to
the aercelastic instabilities of flutter and divergence in forward-swept
wings, the prime goal of this research. The active control results from
the wing examples show specifically that it is possible to improve the
aeroelastic stability of forward-swept aircraft wings of conventional
construction with active control. The use of conventional design

techniques to determine the best compensation configurations provided some

insight into the most useful control surfaces and wing measurements for
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improving aeroelastic stability. Optimal control techniques should now be
ucsed to obtain the maximum improvements available with active control for

these aeroelastic instabilities for particular aircraft applications.
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APPENDIX A

Solution Method Evaluations Using

A 2-D Adirfoil

The following presents an evaluation of possible aerodynamic
formulations and their solution methods that can be used for wing stability
analysis. The lifting surface used for the evaluation is a simple
two-dimensional airfoil that was used by Theodorsen (Ref. 16) to develop
stability methods for the prediction of aeroelastic flutter and divergence.
There are two possible methods that can be used with the stability
calculations of the airfoil. First, a direct method suggested by Edwards
(Ref. 20); and second, a more indirect method using Padé Approximants as
suggested by Vepa (Ref. 19). The results of this airfoil study suggests

the Padé Approximant method for the forward-swept cantilever wing.

Geometry

The two-dimensional airfoil for these method comparisons is shown in
Figure Al. The airfoil is suspended from two linear elastic springs in an
airflow moving from left to right in the figure. The spring suspension 1is
shown connected to the shear center location of the camber line in Figure
AlA. The forces acting on this same airfoil are shown in Figure AlB. This
simple airfoll geometry permits the economical evaluation of two different

formulations of aerodynamic forces for damped lifting-surface motion.

The airfoil geometry of Figure AlA uses as a basic dimension the
semi-chord b, with most of the other dimensions represented as fractions of
b. Thus, the chord length is 2b, with the y axis passing through the
mid-chord of the airfoil. The two degrees-of-freedom used to define the
airfoil motions are airfoil plunge (vertical displacement, h, in the

negative y direction) and airfoil pitch angle (6, or rotation). For this

pitch angle, clockwise is positive. The plunge motion of the airfoil
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corresponds to the motion of a streamwise section at any span station of an
unswept wing, as that wing undergoes bending deformation. The pitch motion
corresponds to wing torsional deformations at that same wing section. The
airfoll aerodynamic loads are resisted both by the linear torsional spring
(twisted with the pitch-angle rotation) and the linear
extension/compression spring (deformed with the plunge translation). These
springs are attached at the airfoil's shear center, a location that allows
the decoupling of its plunge stiffness from its torsional stiffness. This
shear center is a distance ba downstream from the airfoil mid-chord. The
two springs are represented by the spring constants Kh and Ke for the

plunge and torsional stiffness respectively.

Also shown in Figure AlA is the geometry for leading- and
trailing-edge flaps used for aeroelastic stability augmentation of the
airfoil. The hinge point for the leading-edge flap is located cb aft of
the mid-chord. Likewise, the trailing-edge hinge point is db aft of the
mid-chord. The deflection angles are measured relative to the chord line

of the airfoil, with a positive rotation being clockwise.

In Figure AlB, the forces acting on the airfoil and the airfoil's
center-of ~gravity (c.g.) are shown. The c.g. is located a distance bx
downstream from the shear center, and it is at this location that the

translational (plunge) mass Mh and the airfoil's rotary-pitch inertia I9

are defined.- The aerodynamic forces on the airfoil are represented by two
force components, the aerodynamic 1lift, L, and pitching moment, Mg. acting
at the airfoil's quarter chord. The linear springs provide structural
resisting forces to the airfoil deflections h and © that are linearly
related to these deflections by the spring constants Kh and Kg.
The stability calculations for the airfoil are made using an
equilibrium position defined as zero angle-of-attack and zero plunge
displacement. Thus, prior to disturbing the airfoil, the equilibrium

conditions are zero lift, L, and zero aerodynamic pitching moment, M
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Using this basic airfoil geometry, Theodorsen developed many examples

of critical airspeeds for flutter, Uf, and divergence, U The differences

in the examples were created by varying such airfoil chaiacteristics as Mh’
IG, Kh’ Kg, X, » etc. Two of these examples are used in the evaluation of
the aerodynamic-force formulations to be used for the wing stability
calculations. The equations of motion for the airfoil will now be

developed.

Equations of Motion

The airfoil equations of motion are developed in a similar manner as
those for the cantilever wing. Lagrange's equation, equation 12, is
applied to energy terms developed for the two degrees—of-freedom of the
airfoil. Due to the small number of degrees-of-freedom, the h and 6 are
used directly to describe the airfoil motion rather than using a coordinate

change to the vacuum vibration modes.

The kinetic energy T for the airfoil is calculated using the
velocities of each element of mass along the chord of the airfoil. As in
the cantilever wing, the assumption of small displacements is again made.
Because velocities in the vertical direction are the only velocities large
enough to significantly contribute to the kinetic energy, the vertical
displacement along the wing chord, E(x), is used to calculate these

velocities.
h(x) = -h - 8(x - ba) (A.1)

The airfoil's kinetic energy then is the sum of the velocity and mass

contributions along the chord line:

b
T -\ 1720028 ax
b
(A.2)
b
= \1/2]-h - &(x - ba)]zz(x)dx
“b

A-b
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As a function of chord location, the mass of the airfoil is 5 The

kinetic energy can be written in a simplified way.

b

S(X)dx

-b

b

(x - ba)? B (x)dx
-b

b

(x - ba)g(x)dx
-b

bx“Mh

All of these equations allow the kinetic energy to be expressed as:

2

T = 1/2uh1§2 + 1/21,8% + sg6h (A.6)

The term S, is the inertial coupling introduced between 6 and h. It is

(2]
necessary since h is measured from the shear center and not the c.g.

location. The strain energy term U for the airfoil is the summation of the
strain energy in the pitch and plunge springs created by displaclements in

© and h.

2 2
U=1/2h Kh + 1/20 Kg

All that is needed for the airfoil stability calculations is the
gereralized airforces. Two possible formulations of aerodynamic forces
will be developed in the following sections. The aerodynamic formulations

dictate the stability solution method that can be used.

Applying equation 2 to the kinetic and the strain energy calculations
for the airfoil, the equations of motion are derived, one for each

degree—of-freedom of the airfoil.
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Mhﬁ + 596 +Kh=qQ (A.B)

Sgh + 1,8 + K8 = Qg (A.9)
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The equations are organized in matrix form in a similar fashion to that of

the wing.
Mo S, h N I nl . o
5g I | L6 0. k, Jle Q (A.10)
h
(M) + (K] - M
o (2]

Since the airfoil is used to evaluate aerodynamic-force formulations
employed later on the cantilever wing in the Laplace domain, the equations
of motion for the airfoil must also be transformed using the Laplace
operator. Therefore, equation A.10 is transformed in a similar manner to

that performed on equation 11.

={% (A.11)
%

s2[M] + [K]

o o
o T

When the generalized forces are also tranformed to the Laplace domain (as
will be shown in the following sections), the stability for the airfoil is
then determined by the airfoil's response to a small disturbance as
indicated by the value of the roots of the airfoil's characteristic

equation.

Aerodynamic Forces

The aerodynamic forces are developed next for the airfoil in the
Laplace domain. For active control applications, these aerodynamic forces
must also include contributions made by the movement of leading- and
trailing-edge flaps. 1n order to account for damped airfoil motion, two

formulations are examined for suitability with the wing calculations. The

first method gives damped-motion airfoil aerodynamics similar to those
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developed for sinusoidal airfoil motion by Theodorsen. The second method

is a formulation that uses Padé Approximant polynomials to approximate the

aerodynamic forces. The discussion of these methods can be made clearer by

first recalling Theodorsen's sinusoidal method.

Theodorsen's Method

For two-dimensional incompressible flow over a sinusiodally
oscillating airfoil, Theodorsen (Ref. 16) developed the aerodynamic 1lift
and moment forces of equation A.12 as functions of time. The sinusoidal
lift, L, and moment, Ms c.» are defined at the airfoil's shear center by

the following equations:

L = )pr [h+UG—bC 9]

+2 rPEUb (k) [h+U9+b( +5-C, o0 O] (A.12a)

- 2
M. = )rpb [bclot h-Ub( . 5~ —Ca )e- (1/84C)

)

+2 T EUbA(.54C ) € (k) [h+UB+b(.5-C y )E] (4-12b)

Here F)and U are the freestream density and airflow velocity respectively;
Cl“ is the lift—-curve slope of the airfoil section; and E(k) is the

Theodorsen Function of the reduced frequency k described in equation A.l4.
The Theodorsen Function C(k) is defined as a ratio of Hankel functions in

the variable k.

2) (2)

€ - ) 7 a Pao + 1 P ao) (A.13)

These are zero- and first-order Hankel functions of the second kind. Here
k is the frequency of airfoil oscillation that is non-dimensionalized by
the airfoil semichord and freestream velocity.

= Wb/U (A.14)

Using the Theodorsen Formulation for the aerodynamic forces, neutral

stability airspeeds for the airfoil can be found. In these stability
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calculations, solutions of the equations of motion are obtained for
oscillatory motion that is of constant amplitude, the type of motion on

which the Theodorsen formulation can be applied.

Edwards' Method

The aerodynamic-force formulation used with the active controls must
be expanded to include damped motion of the lifting surface. Also the
Laplace domain is the most convenient domain for solving design problems in
linear controls. The solution methods, in the Laplace domain, involve only
algebraic manipulations of the equations of motion. Edwards (Ref. 20)
suggests a method for extending the Theodorsen formulation to damped
airfoil motion in the Laplace domain. This method provides a direct
calculation of these airloads, provided that the value of the Laplace

variable s describing the wing's motion is known a priori.

The development of this method, which is described in detail in
Reference 20, is highlighted next. The Edwards' formulation gives the
transformed loads of lift and moment (caused by damped motion) at the shear
center of the airfoil section in a similar fashion to Theodorsen's
sinusoidal formulations. The airloads are essentially the Laplace
transforms of equations A.12, where the transform é(;) of the Theodorsen

Function E(k). is again calculated from Bessel functions.
€(s) = (K(8)) / (Ry(s) + K/(s)) (A.15)

The terms Ko and Kl are modified Bessel functions of the second kind, zero
and first-order respectively. The variable s is a non-dimensionalized form
of the transformed variable s. It contains the reduced frequency of

oscillation in its imaginary part.

s = sb/U
Ob/U + ik (A.16)

When put in a matrix form, these transformed aerodynamic forces define an
influence coefficient matrix that is compatible with the aerodynamic forces

of equation A.11.
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The elements of this matrix can be recognized as the transformed
constituents of equations A.12, with a typical example being shown in
equation A.l8.
< 2 2 2 2
Agg = Tob [—Ub(.S—ny )s-b (1/§+C1“ )s”]

+2 WP b (C e +.5) €U+b(.5-C (o )] (A.18)

This formulation for the airfoil's aerodynamics causes some difficulty when
it is used in the stability calculations of the airfoil. The difficulty is
caused by the Bessel functions contained in the é formulation. The
variable s cannot be factored out of these Bessel functions. Thus, s wust
be known in order to obtain a value for é(s). Unfortunately, s is one of
the values sought in the stability analyses. This difficulty with the
Edwards' formulation for the airfoil's aerodynamic forces requires a
cumbersome iteration method for the stability calculations (discussed
later). But what is needed is a way of posing the airfoil (and later, the
wing) aerodynamics in such a way that the motion variables can be factored
out of the airload predictions. The following approximation method

provides just such an aerodynamic formulation.

Padé Method )

Several sets of aerodynamic forces, calculated for different
frequencies and damping levels of airfoil motion, can be used in the
development of airload approximations for damped motion by use of Padé
Approximants (Ref. 19). First the aerodynamic forces corresponding to
selected values of damped airfoil mwotion can be calculated using Edwards'
method. The value of s corresponding to the motion contains the damping
level in its real part and the frequency in its imaginary part. Using a
set of different s values, a corresponding set of damped aerodynamic forces
can be calculated that can be used to estimate the forces as functions of

s. Approximations can be made of the airfoil's aerodynamic forces

. - - et -.. -.- l“ \“ —‘. l.", ‘.h\‘~~-. -’~ .~ -7~ .1
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(calculated for different values of s) by requiring a least-squares fit of
selected functions of s to the above aerodynamic forces. The functions
used to approximate the aerodynamic forces are chosen based on their
accuracy of approximation and their compatibility with the equations of
motion. The form used in this research is the Padé polynomial
approximation similar to that suggested by Vepa. It provides a functional
form for the approximations that easily combines with the other terms in
the equations of motion. Note that the special case of sinusoidal motion
of constant amplitude can be directly related to a reduced frequency used
with sinusoidal aerodynamic-force calculation. This relationship can be

seen using the non-dimensional form of s.

b(0. + 1) /U

/2]
]

(A.19)

ik

The form of the Padé Approximant used here for the aerodynamic forces
delineates ratios of polynomials in s. Pfjl and ijl are the real-value
f
coefficients of the variable s , with the limits of f being n and d for

numerator and denominator respectively.

n d

- £ £

Ay = 1) (e st) 711+ Y (o st (A.20)
£=0 £=0

The values of n and d determine the orders of the polynomials used to
approximate the aerodynamic forces. The orders of the polynomials for the
airfoil calculations are selected using criteria based on the upper and
lower limits of the frequency of the aeroelastic instability that must be
calculated. For the stability analyses, the need for high orders for
polynomials is tempered with the need to minimize the computational effort
that increases as n and d increase. The relative order of numerator
polynomial versus the denominator polynomial is based on the high and low
frequency limits of the lifting force L. The orders of s, O(si), from a

Laplace transformation of equation A.12 would be as follows.

A-10
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= £,(0(s7)) + f2<o(s>>€(s> (A.21)

Here the function fl is the non-circulatory lift term containing

second-order terms of s, and the function f., is the circulatory lift term

2
containing first-order terms of s. When the orders are determined for the
approximation to C(s), the overall orders for lift and moment

approximations can be calculated.

The polynomial approximation of e(s) is suggested by its equivalent
formulation for indicial responses. The basic form of the e approximation

is a polynomial ratio of s.

A a

_— . j

e - 1) psty /1) ast) (A.22)
i=1 j=1

Here Pf and Qf are real coefficients of s. The best choice for the ratio
of 0 to 3 can be obtained from Wagner's Indicial Function ¥(s) (Ref. 20).
This function ¥(s) is found in the response caused by indicial input in the
same way that the sinusoidal Theodorsen Function e(k) is found in

response to sinusoidal input. The limits that ¥(s) exhibit are displayed

in terms of the variable s.

Lim ¥(s) = .5
s 00
(A.23)
Lim ¥(s) = 1.
s+ 00

If a ratio of polynomials is used to approximate ¥, the above limits would
require the numerator and denominator to be the same order. This ratio for
% suggests that the t counterpart, E(s) should also have equal-order
polynomials. Therefore, 3 equals 7 for the é(s) polynomial

approximations.
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With the ratio of polynomial orders set for €, the approximation can
be included in equation A.21 to obtain the ratio of polynomials needed for
the aerodynamic forces. An example of the evaluation needed polynomial
ratios can be made with the transformed 1ift forces created by the airfoil
plunging degree-of-freedom. The force ih is put in the form of equation

A.21, and the approximation for e is included.
- 2 s & 4
(s) = £.(0(s%)) + £,(0(s)) €(0(s"/s™)) (A.24)
Ly, 1 2

Equation A.24 can be rearranged to show the orders of s needed for the

polynomial approximation for this force.
d+2 d
L = f3(0(s ) / 0(s7)) (A.25)

Equation 25 shows that the order of the numerator for Eh should be two
higher than the order of the denominator. This same relative order can be

found for each degree-of-freedom contribution to the loads.

With the ratio of the polynomial orders determined, the absolute value
of these orders is defined by a series of comparisons. These comparisons
are made between airloads calculated using Padé Approximants for several
values of 3 and those calculated by the Edwards' formulation. Examples of
these comparisons are given in Table Al. In these examples the component
of 1ift caused by constant amplitude-plunge oscillations is calculated for
several values of frequency using Edwards' exact method. These forces are
then compared to forces calculated using Padé Approximants. The Padé
calculations are made with three different orders for the polynomial
approximations. By comparing between the exact calculations of Ih and
those made using the approximations (both real and imaginary), the choice

A
of 1 for d is best.
The aerodynamic forces just discussed are forces resulting from motion

caused by the airfoil alone. When the control-surface motion is added to

the airfoil, this influence on the lift and moment of the airfoil requires

-
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a higher order tor the denominator of the approximations to obtain a good
agreement. This added order for the denominator results in the polynomial
orders for the Padé Approximants as order three for the numerator and order
two for the denominator. Using these Padé Approximant orders, some
examples are given in Table A2 of polynomial coefficients for the 1ift and
moment airloads. In the upper portion of Table A2 an example set of
coefficients is presented for the numerator and denominator polynomials of
the 1ift and moment approximations. These coefficients will later be

recalculated using a simplification of the denominators.

In the upper half of Table A2, a Padé Approximant polynomial ratio is
created for each degree-of-freedom contribution to each aerodynamic force
component Kij of the airloads. These polynomial ratios could then be
organized into elements of an aerodynamic influence coefficient matrix.
However, the denominator from each polynomial ratio would introduce two
roots into the characteristic equation for the airfoil equations of motion.
To simplify the aerodynamic force representation and reduce to a minimum
the number of roots added to the stability calculations, the Padé fitting
process 1s modified. A second aerodynamic least-squares approximation is
made using a fixed and non-variable denominator for the Padé Approximants.
The denominator polynomials from the first least-squares fit are averaged
(giving equal weight to each force component) to form this new fixed
denominator polynomial. Thus, this second fit allows the polynomial
approximations of all the aerodynamic forces to be expressed with a common
denominator. This form for the Padé Approximants will introduce into the
overall stability calculations of the airfoil a total of two roots rathér

than two for each element of the matrix aerodynamic influence coefficients.

Using this common denowinator, the transformed aerodynamic forces for
the airfoil can be organized in a simplified matrix form. In the airfoil
airloads, the denominator's polynomial coefficients can be factored out

from the matrix expression of the Padé Approximants.
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3 oen -
[P3s3 + + Polhe E
[P3s + + PO]99 e

With rearrangement, this equation simplifies to equation A.27, The
coefficients of the numerators for each force componenet can be organized
into matrices of constants, corresponding to the orders of s. Each
coefficient Pfij is the numerator polynomial coefficient for order f of s.
It is in the Padé Approximant for force i, resulting from degree-of-freedom

.

o

6h = [A] (A.27)
59

o)

Table A2 shows the results of using the denominator averaging for the
Padé Approximants of the airfoil. In the lower half of the table, the
coefficients of the numerator and denominator are listed that result from

applying the denominator averaging and second least-squares fit, There are

only small changes In the numerator coefficients, except for the th Padé
: Approximant. The P3h9 in this term (the coefficlent of 83 in Ahe) is
changed. Fortunately, even with the simplification of the polynomial

;' denominator, examples shown in Appendix C demonstrated exact agreement of
!! neutral-stabillty airspeeds between airfoils using the Padé Approximant
aerodynamic forces and the neutral stability alrspeeds first calculated by

- Theodorsen.

With the choice of polynomial crders determined, the values of s used
to generate the alrloads that provide the best least-squares fitting
results must be selected. In selecting values of s to generate forces for
the lecast-squares fittings, the most Important measure of merit is the

ability for the resulting force approximations to predict the correct
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flutter and divergence alrspeeds. Secondary criteria are the responses of
the wing section below the critical velocities for flutter and divergence.
However, the instability velocities must be predicted correctly, or the
sub-critical responses are not useful. For predictions of Ud' values of s
defining reduced frequencies at or near zero are essential. This
requirement results from the zero-frequency nature of aeroelastic
divergence. For predictions of Ug s values of s that define reduced
frequencies in the range of .3 are needed for the airfoil examples used in
this research. This reduced frequency is an average of the critical
reduced frequencies (occurring at the neutral stability point for flutter)
in the examples used from Theodorsen's airfoil studies. Higher values of
reduced frequency do not improve the predictions of Uf for any of the
configurations of this study. Since higher values of reduced frequency

widen the frequency range the fitting process must span, they are not used.

The selection of values of s used in the least-squares fit for the

Padé Approximants is illustrated in Table A3. On the bottom of the table,

exact values for U, and U_ are given, calculated by using the damped motion

aerodynamic forcesdsuggesied by Edwards, which agree exactly with those
originally calculated by Theodorsen. In the listings found above these
exact values, there are lists of values of s used to generate airloads for
the least-squares fit. THe values of U, and U, (calculated using the force
polynomials from the fitting of each list of s) are recorded just below the
values of s. In choosing an array of values for s, both the real and the
imaginary values in s must be selected. Table A3 is typical of several
comparisons that can be made. Zero is the best selection for the real
parts of s to be used in calculating Padé Approximants. Therefore, the
Padé Approximant polvnomials can be calculated using only sinusoidal forces
as their basis, since they provide the most accurate approximations for the
predictions of Ud and Uf.

Qontro}ngg[fanuﬁgﬁggzﬂiE{SE

For the airfoil, calculating aerodynamic forces of the control

surfaces can be done using the trailing-edge flap/tab equations that were
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developed in Reference 28. A coordinate transformation is used that was
suggested by Nissum (Ref. 29) to convert the geometry of an airfoil with a
trailing-edge flap and trim tab to an airfoil with leading- and
trailing-edge flaps. The transformed forces caused by the flaps are added
to the equations of motion in the matrix form of equation A.28. The
influence coefficlent matrix provides forces as functions of the

transformed flap-deflection angles Z and z.

o\

Wl =|%g % (A.28)

69 Aeé Aeﬁ

=

The elements of the this matrix contain flap geometry, flow conditions, and
the variable s. These elements were defined first by Theodorsen and
converted into the leading- and trailing-edge geometry using the Nissum
transformation. A typical element is shown in equation A.29.
2, = = 2 = =

Ahé = ”pllb(-TAS - Tls + 2 T10 + Tlls) (A.29)
The terms T1 and Ti are constants defined by the geometry of the flaps and
airfoil in Reference 28. The control surface's aerodynamic forces can be
calculated directly using Edwards' method when values of s are specified,
or approximated with Padé Approximants when s must be factored out of the
force formulation. The control-surface forces calculated with the Edwards'
method have the same limitation as those forces calculated using his method
for general airfoil motion. This limitation is the stipulation that the
value of s must be known before calculating the control-surface forces.
Since s is the root to be solved for in the stability analyses, an
iteration method must be used. Again a value of s is estimated and then
checked with the equations of motion to see if it is a desired root. But
more direct stability analyses can be made if the control-surface forces

are represented by polynomials of a Padé Approximant.

To make the Padé approximation of the control surfaces compatible with

those of the airfoil's pitch and plunge motion, the denominator used for
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the flaps' aerodynamic forces is taken directly from that used for

- W, ¥ T et e &

approximating the airfoil's pitch and plunge motion. The complex constants
for equation A.30 are calculated from the same series of k values used to
generate the Padé Approximants for airfoil pitch and plunge motion.
Order-three numerator polynomials in s for each element are calculated.
This calculation matches the polynomial orders used with numerator
polynomials of the airfoil pitch and plunge motion. The results can be

organized in matrix form just like that in equation A.27.

% - -—5—1—- Pang Pang |s3 + " + |Fong Fong 6
o 625 +J)s+1. Pags Piog Posg  Foos % (A.30)
flap flap
. 3 ... -
%( - L [Pyls™ + 77 + [Fp) ¢ (A.31)
QQS 6252+515+1. flap flap 7

The Padé Approximant of aerodynamic forces for the contrcl-surface
deflections are now compatible with the other aerodynamic forces of the

airfoil and can easily be included in the airfoil's equations of motion.

Control Laws

The feedback loops for the airfoil are shown in Figure A2. They
define the relationships between the airfoil's motion (in the
degrees-of-freedom of the airfoil) and the deployment of the flaps. In
equation form, these relationships are functions that contain linear
combinations of the degrees-of-freedom h, 6, and their derivatives. The
flap-rotation angles are then determined by these weighted combinations of
the degrees-of-freedom. These weighted combinations are contained in the H

functions.

¢ = R Koo Kai Kaid) * HgolRgarKgarKg) (A.32

(K D+ H, (K )
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In the specification of flap motion, the constants Kij determine, the '
relative weight of the degrees-of-freedom and their derivatives. o
Mathematically, the constants represent gain settings used for linear D
amplifiers in the feedback loops of an actual control system. An example
control law is shown in equation A.32. The relationship between the

trailing-edge flap movement and the elastic-plunge displacement, velocity

and acceleration are contained in Héh' The gain constants K weigh the

displacement, velocity, and acceleration in the H function. 3
=K, h+K.h+K_h A.3 5
Hon 4h Ksh 4h (A.33)
When the Héh function is transformed into the complex plane, a quadratic
compensation loop in the variable s results. :
H, = (K. +Kzs + K,rs5)h (A.34)
h ¢h ¢h $h
All of the feedback-control laws can be put in the form of equation A.34. ;
With these control laws now posed as functions of s, these functions can be -
organized into a matrix form compatible with the displacement vector for
the airfoil. For ease in combining these feedback loops with the k
transformed equations of motion, the terms of the polynomials (for the flap y
deflections in relation to the airfoil degrees-of-freedom) are organized in
matrix notation.
- a 5 -
b0 - | Men Hgo | )P (A.35) :
¥ Hﬂh H‘de e
Equation A.34 is combined with the equation of the flap's aerodynamic
forces (equation A.31). For the equations of motion, the stabilizing
forces can now be written in terms of the displacements of the airfoil.
o 1. (P.]s> *°° [P h, W h :
h = 3 0 fh %0 (A.36) -
- w2 flap flap = = = )
op st +le+l. Hﬁh Hﬁe e

flap
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The equation of motion for the airfoil (equation A.1l) can now be written
in terms of influence coefficient matrices made up of complex constants

that can be used to pre-multiplying the airfoil.

Solution Methods

The method for finding these roots (or poles) is dictated by the
formulation of of the aerodynamic forces in the equations of motion. When
the damped aerodynamic forces are represented by Bessel functions (as in
the Edwards' method for the airfoil), a search method is used to find
values of s that make the characteristic determinant go to zero. When the
damped aerodynamic forces are represented by the Padé Approximants, the
roots of the characteristic determinant can be found, using standard
eigenvalue routines that have been put on digital computers. Both of these .

methods are discussed for the airfoil.

Edwards' Damped Aerodynamics j
When using the Edwards' method for calculating the aerodynamics of -
damped airfoil motion, the value of E(S) is needed to calculate the terms
of the aerodynamic forces. But the desired value of s contains the root of
the characteristic determinant. This determinant, however, can only be R
formed after the aerodynamic forces are calculated. Therefore, a value of .
s must be assumed so that the aerodynamics can be calculated. Then this s
must be checked to see if it forces the determinant to zero. This :;
procedure requires an iteration method to organize the search for the roots
of the characteristic equation. The iteration method used here is an
adaptation of the method used by Hassig (Ref. 30) in his p-k approach for
classical flutter solutions. In this determinant-iteration method, a
Efﬁﬁlfgfflfi search algorithm (Ref. 26) calculates values of s that
svstematically drive the determinant to zero. The determinant-iteration }
process must be started with wing and flow conditions where the roots are
known. The starting point used here is the in-vacuum vibration frequencies
at zero flow velocity. Using these roots as initial estimates, parameters
in the equations of motion can be slowly varied. Then the regula falsi

search method guides the search for the roots. The loci of the roots with
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sclected parameter changes are thus constructed. By gradually increasing
the parameter to be varied, the characteristic roots will change slowly and

not confuse the regula falsi search algorithm.

The search procedure required to find each of the characteristic roots
must be carefully programmed. Since the iteration method must search for
each value of s that makes the characteristic determinant zero, sometimes
many evaluations of the determinant are required to identify a root. Each
determinant evaluation requires a calc:lation of the unsteady aerodynamic
forces. But this procedure can involve large amounts of computer time if,
for example, the velocity increments must be small enough to accommodate
radical changes in the slopes of the loci. KRadical slope changes occur,
for example, when two complex conjugate roots coalesce into the real axis
(break~in point) or leave the real axis (break-out). Another difficulty in
this method is the possibility of overlooking a root. Sometimes, when
several loci are near one another, the iteration method can mistakenly
follow the wrong root loci. To avoid this problem, small velocity
increments and close monitoring of the loci developments are required. The
difficulty of tracking individual roots of loci that are very close can
also be aggravated as the order of the equations increases. Sometimes,
several vibration modes can have similar frequencies. This condition puts

many roots near one another at low velocities.

Padé Approximant Damped Aerodynamics

When using the Padé Approximant method for calculating the airfoil
aerodynamic forces, the polynomials of the approximations are in powers of
the Laplace variable s. Thesc constants, organized in the form of matrices
of influence coefficients of equations A.27 and A.30, can be directly
combined with the mass and stiffriess matrices to form matrix equations of
motion. The characteristic e¢quation and the associated roots can be
obtained by standard eigenvalue programs available on digital computers.
The loci of the roots can be obtained then by choosing all gain and

velocity variables and exercising standard eigenvalue routines.
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Method Applications

The calculations used to compare aerodynamic force formulations are
the divergence and flutter predictions that these methods provide. The
many combinations of magnitude and location of airfoil inertia and
stiffness characteristics in Reference 16 allow a wide variety of
comparisons to be made. While sweep angle has no direct meaning for the
infinite-span airfoil, the relative locations of shear center and
aerodynamic center can produce airfoils that have divergence as their most
critical aeroelastic instability. These airfoils can be used as check
cases representing the divergence-critical nature of forward-swept wings.
The two aerodynamic force methods, the Edwards' method and the Padé
Approximant method, are examined using two example cases. The Case D (for
divergence) example has divergence as its most critical aeroelastic
instability, and the Case F (for flutter) example has flutter as its most
critical instability. The physical characteristics are defined in Figure

Al and the values used to describe these cases are given in Table A3,

Edwards' Method

Aerodynamic forces from Edwards' method are used in the airfoil
stability calculations, illustrated in the velocity root loci of Figure A3.
This velocity root locus shows the movement of the characteristic roots of
Case D as a function of changes in freestream airspeed. Only the upper
half of the complex plane is plotted because of the complex conjugate

nature of the roots that have non-zero imaginary parts.

At zero airspeed, the roots lie on the imaginary axis. These axis
locations correspond to the values of the natural vibration frequencies of
the elastic structural modes. Vacuum vibration mode 1 of the airfoil Case
D (whose motion is dominated by the plunge degree-of-freedom) has a natural
frequency of 10 rad/sec. Therefore, the root locus having its zero
velocity location on the imaginary axis at that value is referred to as
mode 1. In sinilar fashion, reference is made to the mode 2 locus. Its
zero velocity value is located on the imaginary axis at a value

corresponding to the second vacuum vibration frequency, 25 rad/sec.
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Table A4 Physical Characteristics Of The Airfoil Examples

Case D Case F
a ~. 4 ~. 4
Ta .5 .5
Xa .05 .1
b ft 3. 3.
Wy rad/sec 25. 25.
Wy, rad/sec 10. 10.
c -.6 -.6
d .6 .6
P . slugs/ft .002378 .002378
Ug ft/sec 224. 218.
Uy ft/sec 188. 375.
/.4 5. 20.
, L 1/2
wy = (/)
n
Wy = (Kelle)]/“

- JOrp b2
3,/ ULP

ro = (1700
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Figure A3 Velocity Root locus For Case D
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As airspeed is increased, movement of the roots of mode 1 and mode 2

3 described basic patterns which are repeated throughout all the airfoil
results. The plunge-dominated mode 1 shows a reduction in frequency by
movements of its roots towards the real axis. At the same time, an
increase in damping is shown by their movement to the left. Once the
conjugate roots meet on the real axis (break-in point), one root moves in a

- positive direction along the real axis while the other root moves in a
negative direction. At a velocity of 188 ft/sec, a root of the mode 1 root
pair crossed the imaginary axis, moving towards the right (negative damping
direction). The airspeed at this crossing is defined as Ud‘ A similar
pattern in the mode 1 loci is repeated with all the airfoil (and later, the
wing) examples. That is, the divergence velocity is defined by a root that
began as the lowest frequency vibration mode dominated by plunge motion

* when velocity was zero.

The second complex conjugate pair of roots move such that as airspeed

: is increased, damping is first gained, then later lost. This is shown by

] the movement at first to the left and then back right towards the imaginary
axis. Damping finally becomes negative as the roots cross the imaginary

\ axis at Uf. Because this imaginary axis crossing occurs with non-zero

. imaginary parts, the crossing defines flutter rather than divergence. The
airfoil experiences flutter at a velocity of 225 ft/sec. The pattern for
this root locus defining flutter is typical for the other examples of
flutter. All the loci defining flutter have roots at zero freestream

velocity with a frequency of the first torsional (pitch dominated) mode.

Both the divergence- and flutter- critical airspeeds for Case D, using the
Edwards' method for aerodynamic forces, agree with airspeeds that are

predicted by the solutions of Reference 2.

The stability characteristics of Case F are described graphically by
the velocity root locus of Figure A4. The divergence instability is again
2 defined by the roots of mode 1, now at an airspeed of 375 ft/sec, while the
. roots of mode 2 define flutter at an airspeed of 218 ft/sec. Again the

Edwards' method for aerodyramics aprece with the solutions of Reference 2.
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With the proper prediction shown for the instabilities without active
controls, the investigation into possible feedback control loops can be
made. By actuating the trailing-edge flap proportionally as a function of
the plunge deflection of the airfoil, the velocity root locus of Case D
(shown in Figure A5) is calculated. Here the plunge signal is multiplied
by a simple gain value chosen to be .l rad/in. This positive-feedback
signal drops the divergence velocity from a value of 188 ft/sec (without
controls) to 121 ft/sec (with controls). Along with this, the shape of the

locus of mode 2 has been changed drastically.

The Case D velocity root locus can be further modified with active
control if the flap is deflected proportionally to the negative of the
pitch angle of the airfoil. Figure A6 shows a velocity root locus for this
feedback loop at a gain value of -.1 rad/in. Flutter has now been lowered

to 121 ft/sec, but divergence is absent.

Figures A7 and A8 show similar modifications to the velocity root
locus of Case F. The leading edge flap deflection is related to the plunge
deflection by a gain of .1 rad/in, using positive feedback for Figure A7
and negative feedback for Figure A8. Note that the flutter speed is
strongly influenced by the sign of the feedback signal.

The determinant iteration method of obtaining roots works well for
these simple airfoil configurations. Realistic subcritical damping and
frequency information is obtained by using the Edwards' method for forces
from damped airfoil motion. But a basic difficulty arises with this
method. The regula falsi scheme for new root prediction can easily become
confused when discontinuous changes occur in the root loci. Considerable
logic must be included in the computer routines of this method to deal with
discontinuities. This situation is especially difficult where complex
conjugate roots move to the real axis at a break-in point. At these
points, the roots split in positive and negative real directions. When

this split occurs, the estimation and refinement process of the regula

falsi scheme must be artificially forced to examine (for higher velocity
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roots) only the real axis and not project into the non-zero imaginary
coordinate space for the higher velocity roots. At these points of
possible confusion in the process of generating the root loci, the process
generally requires monitoring of the computer development of the loci by
the investigator, and very small steps in velocity must be imposed to
prevent the roots from changing too much from step to step. Since the
aerodynamic forces are evaluated at each velocity step, these small steps
in velocity require many evaluations of the aerodynamic forces. These
evaluations can result in unacceptable expense for any stability problem

larger than this two degree-of-freedom airfoil.

Similar care must be exercised when roots pass close to one another in
their loci. In these instances, the regula falsi method tends to jump at
times from one root locus to another nearby. As more degrees—of-freedom
are introduced into the equations, this jumping from one locus to another
becomes more of a problem (configurations with many modal frequencies in
close proximity cause this difficulty, such as large bomber and transport
wings). The regula falsi search requires very small increments in

velocity, sometimes increments as small as 1 ft/sec.

Padé Approximant Method

The airfoil is also used to confirm the ability of the Padé
Approximant aerodynamics to predict flutter and divergence. This method
permits the selection of any velocity range for the root loci without the

requirement to start from velocities with known root values. Therefore,

only a small number of velocities in the vicinity of Ud and Uf are used for

the airfoil cases.

Recall that Figure A4 presents the velocity locus for Case F when no
active control is present. The locus lines are drawn using the Edwards'
method for the aerodynamics. located with the letter X on these loci are
sample root locations calculated using the Padé Approximants aerodynamics.
These root locations are representative of several correlation checks made

between the Padd Approximants and the Edwards' method. Exact agreement is




shown by the Padé roots with the loci calculated by Edwards' method.
- Therefore, the Padé Approximants' economy of calculation can be exploited
in lieu of Edwards' method, without loss of accuracy at these low levels of

damping.

B8 4 s 5 8 8

Evaluation
. The results from the airfoil examples suggest that the best method for
calculating aerodynamic loads of the wing examples is by use of the Padé
Approximants. Using this method, the aerodynamic loads must be calculated
for a small number of frequencies only once to perform the squares fitting
process. Any range of velocities can be used in the calculations of the
root loci since the regula falsi search is not required. Finally, there is
no possibility of losing a root since all eigenvalues are calculated at
each freestream airspeed. The limitations of this method evolve from the
fitting process needed to establish a useful relationship between the
motion of the lifting surfaces and the resulting aerodynamic forces. Extra
roots are introduced into the equations of motion from the denominator of
the Padé polynomials. For proper predictions of critical airspeed, the
. force data used for the fitting process must be purely sinusoidal. Thus,
calculations for highly damped motion can lose accuracy because the
aerodynamic force approximations are developed using zero damping motion.
Perhaps most disturbing is the possibility of roots from the equations of
motion with positive real parts, caused only by the aerodynamic force
approximations (Ref. 22). 1If the least-squares fitting for the Padé
Approximants produces a denominator that has roots that have positive real
parts an instability would exist in the airloads themselves, which should
not occur in nature. Fortunately, for the wing examples used in these
studies, no positive roots from the airloads' approximations were

calculated.
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APPENDIX B :

The Doublet-Lattice Method

The application of the doublet-lattice method is the first step in
calculating aerodynamic forces due to damped motion of a forward-swept
wing. This method is applicable to the forward sweep geometry and provides
for control surfaces on the wing planform. The following is a brief .

description of this sub-sonic compressable flow method. -

The doublet-lattice method provides a small-disturbance solution for
unsteady airloads of arbitrary three-dimensional wings (Ref. 18). This
solution is calculated using an array of doublet singularities that satisfy
the small pertibation acceleration potential equations. The acceleration

- potential is used to simplify the specification of singularities that

3 .l .l -l "¢ S S *

- represent the wing. The desired specifications for the near field boundary
i conditions are downwash values on the wing planform. By assuming simple
N harmonic motion the magnitude of the downwash |w(x,y)l at x,y due to a

. sinusoidal pressure difference IAp(TZ,g)I at n,g can be calculated

. using equation B.l.
~
lox,y)] = —(an‘pU)'ljJ[IAp(Tz,g)I%/(x-rz,y,g,w,n)dndg (B.1)

Here the kernal of the integral is a function of gcometry, oscillation
AN frequency, and Mach Number. The doublet-lattice procedure uses an array of
doublets to provide the pressure difference cover the wing planform. Their
strength can be defined when their downwash from equation B.1l is required

to match the downwash field of a wing. The Ap pressures then provide the

- forces on the wing planform, -




In Figure 4 the doublet-lattice idealization is presented for the
cantilever wing used here in the active control calculations. An example
of one of these doublet-lattice panels is shown in Figure Bl. 1In Figure Bl
the line of doublets, the force point, and the control point are also
marked. In order to properly array the singularities and control points to
avoid numerical singularities the boxes must be oriented to have streamwise
edges but may have arbitrarily swept leading or trailing edges. The panels
become the basic geometric building blocks for the idealization of lifting

surfaces.

The paneling technique provides an orderly way to array the doublet
singularities and specification points for boundary conditions (control
points) to represent the wing. As shown in Figure Bl each panel contains
an array of doublets along the quarter chord that have a parabolic strength
distribution along the line. Their strength is zero at the ends of the
line. An arbitrary constant scales their absolute value interior to the
line endpoints. The force point is the point of application of the
resultant force created by the doublets moving through the freestream flow.
It is located at the mid-span quarter chord position of the panel. Each
panel also has a control point for prescribing boundary conditions. The
downwash from the entire wing doublet array must match the actual wing
downwash at the control point. This control point is at the mid-span
three-quarter chord location of the panel. Thus each panel needs one value
to be specified (the strength of the doublets) and supplies one downwash
boundary condition. The doublet strengths can be determined uniquely when
all of the downwash values are specified. These are determined when the
wing motion (such as the vibration mode shapes) is prescribed at each

control point.

The doublet-lattice computer program calculates the influence of each
panel on the othwer panels and stores these. When combined with the panel
areas, the result is an influence coefficient matrix. Since the
doublet-lattice method is linear, this influence coefficient matrix is
stored and can be used repeatedly to calculate loads for any wing motion

that occurs at the frequency for which the matrix is calculated.
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Wing Planform

Individual Panel

Resultant Force Point

N Control Point

Doublet Line

Figure Bl Typical Doublet-lattice Panel
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APPENDIX C v

Wind Tunnel Correlations

v v e w v,

- The following presents comparisons between wind tunnel experiments and <
Padé Approximant predictions of forward-swept wing stability. The ability
of analyses using Padé Approximant based aerodynamics to predict

aeroelastic instabilities of forward-swept wings, especially divergence, is

validated by the following correlations with wind-tunnel tests.

S I ]

Flutter-prediction capabilities for Padé Approximants have previously been

.

established in Reference 13. However, the research documented here is the
first application of Padé Approximants for the prediction of aeroelastic .
divergence. The Air Force Wright Aeronautical Laboratories (AFWAL)
- developed divergence wind-tunnel data using flexible, forward-swept, N
. cantilever wing models in the subsonic wind tunnel at the Air Force
g Institute of Technology (Ref. 32). These test data are used to validate .ﬁ

the use of Padé Approximants for divergence. Ny

The wind-tunnel models use composite plates to represent several

variations of full-scale wing-box construction. These model wings are i
:% constructed to produce different structural elastic couplings in R
t‘ deformation under load. These different couplings provide variations in .

divergence airspeeds for the same sweep angle of the model wing. When the
variations of sweep angle are included with the structural variations, N

these data provide several examples with which to compare analytic

.
'll" *e

divergence predictions, The model geometry is pictured in Figure Cl.

PN
AT

Shown in the picture is the cantilever root attachment which is mounted to

! the wind~tunnel roof during the tests., Also pictured are three different

: structural plates. The aerodynamic (but non-structural) fairing that

3 covers these plates is shown at the top of the picture, with the wind .
- tunnel attachment bracketry in place at the wing root. The fairing [
'a maintains the proper airfoil shape while allowing freedom for deformations ﬁ
. E
:
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in the internal structural plates. The root attachment fitting allows
adjustments of the leading-edge sweep to various negative sweep angles

without changing the elastic characteristic of the flexible wing. The

TR

internal plates providing the strucutural stiffness for the wings are

constructed using layers of graphite/epoxy material. These layers contain [

A8 a4 & u_8s

unidirectional graphite fibers in an epoxy matrix. The layers are

laminated together with each layer providing a different fiber direction.

.; The relative angles the fibers make with the mid-chord line of the wing
define the basic layup of that structural plate. For these tests, the
different plates constructed for the model are fabricated using variations
of a basic layup of 00/+45°/—45°. These fiber directions are measured with
respect to the wing's leading edge. The variations are made by rotating
the 0°/+45°/-45° layup by a small angle (called the kick angle j\_k) with
respect to the wing's leading edge. Thus, a layup that has a 7.5° kick
angle is a layup that has fiber angles of -7.5%/-37.5%/+52.5° with respect -

- to the wing's leading edge. As this kick angle is changed, the deformation

. ..
DR

coupling between wing bending and torsion also changes, producing a

corresponding change in the critical airspeeds for flutter and divergence.

The test results for two model internal plates, each tested at three

leading-edge sweep-angle settings, are presented in Table Cl. The data

relll St

represent comparisons between wind-tunnel test data and the dynamic

pressure at divergence, 94> calculated with three analytic techniques. The g

first technique presented uses the Padé Approximant method, which is the .
:j basis for the calculations in this research. The second is the :
' finite-element structural- and doublet-lattice aerodynamic program NASTRAN
g (Ref. 33). The third method is the continuous-plate structural-and
doublet-lattice aerodynamic program TSO (Ref. 34). The last column lists
the percentage differences between the Padé Approximant method and the
wind-tunnel test values for 94- Along with the table, some examples are
included of the root locus plots from the Padé Approximant stability
calculations for these models. These examples show the effect that "

3 sweep-angle changes have on the sub-critical damping of the roots.
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Noting the comparisons of the various methods in Table Cl, a meximum
error of 8% is shown between tests and the predictions made with the Padé
Approximant aerodynamics. These approximations use results from the
doublet-lattice method as a basis for their least-squares fitting. But
errors of up to 10%Z using doublet-lattice are considered acceptable. Since
the Padé Approximants provide predictions that are equal to or better than
what 1s considered acceptable for the method on which they are based, the
Padé Approximants provide an acceptable analytical model for the

aerodynamic forces.

Figure C2 is the velocity root-~locus plot for the model configuration
with [\k of 0°. The leading-edge sweep 1is -15°, with the in-vacuum
frequencies for the structural vibration modes appearing at root locations
on the imaginary axis. Mode 1 is the first wing-bending mode at 3.51
rad/sec; mode 2 is the second wing-bending mode at 17.68 rad/sec; mode 3 is
the first wing torsion at 27.29 rad/sec; and mode 4 is the third wing
bending at 44.96 rad/sec. In this figure, the divergence condition is
defined with a zero-frequency modal crossing of the imaginary axis by the
mode 1 root at a dynamic pressure of 12.9 lbs/inz. This instability is
followed at a higher freestream flow velocity by a flutter instability
indicated by mode 3. Again the modes defining both flutter and divergence
in this root locus illustrate root-locus characteristics which are found in
all root-loci examples of this research that contain no feedback circuits.
The divergence condition is defined by the mode whose zero airspeed
ancestry is the lowest frequency bending mode. The flutter condition is
defined by a mode whose zero airspeed ancestry is the torsion mode of
lowest frequency. In this example, 94 is smaller than q; so the
wind-tunnel model exhibited aeroelastic divergence in test, with the

flutter instability not observed.

Figures C3 through C5 present root locus calculations using Padé
Approximants of the wind-tunnel model with a./\ of 15°. In Figure Cl, the
model is mounted with a j\.of -15° ; Figure C2 presents the same wing model
with a Aof -30%; and Figure C3 has this model at a Aof -45%, 1In all
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three sweep configurations, the most critical aeroelastic instability

predicted (and observed in testing) is divergence.

By comparing Figures C3 through C5, the changes in the root loci (due
to progressive increases in negative leading-edge sweep) are evident. As
the leading edge becomes more forward-swept, both the root locus associated
with divergence and the root locus associated with flutter show changes.

As the forward sweep is increased, the break-in location of the mode 1
roots moves progressively towards the imaginary axis, and the divergence
velocity also decreases. Also, with increased forward sweep, the curvature
of the locus for mode 3 decreases. This is the mode that would define the
most critical flutter speed if the airspeed were sufficiently increased.
This change in cu-vature suggests that the flutter instability should occur

at progressively higher flow speeds for forward sweep angles.

The changes in sweep angle of the model are aerodynamic only and do
not change the model's stiffness. Because the wing is cantilevered at the
pivot-attachment (essentially rigid) outboard of the pivot pin, changes in
the vacuum vibration modes are not measurable as the leading-edge sweep
changes. Thus, sweep angle effects on the model's aeroelastic

characteristics are due only to the aerodynamic sensitivity to sweep.

Even though the vibration modes and frequencies of the model wings do
not change with sweep, sweep does effect the elastic contributions of the
wing to the aeroelastic instabilities. For example, as loads increase, and
the wing bhends under these loads, this bending produces more and more
angle-of-attack changes at each span station as wing sweep increases. This
condition is shown in Figure C6. These angle-of-attack changes can either
be positive or negative, depending on whether the sweep is negative or
positive. The effects of torsional deformation on local angles-of-attack
are also similarily modified by sweep. These changes due to sweep suggest
an explanation for the test point at jx.of -15° and,[\k of 15°, a
vagueness in the type of response is demonstrated by the model at this test

condition. The mndel did not diverge, nor did it flutter. It exhibited an
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irregular random movement that fit neither of the above descriptions. Now

r

at large values of forward sweep, the wing deflection at divergence is
primary bending. As the forward sweep is reduced, the wing deflection at

divergence contains more torsional deformation. At some low value of

L2 D I

forward sweep, the importance in divergence of primary bending deformation
versus primary torsion deformations reverses. It appears this transition
may be occurring at the -15° sweep condition with a./\k of 15° for the

wind-tunnel model. To investigate this vague test point further, the rate

SRS &1

of change of damping (with changes of velocity at the onset of aeroelastic

PR

divergence) is examined as sweep 1is changed.

5 A way of describing the rate at which the loss of stability occurs
with increases in velocity is the degree of explosiveness of the
instability. Classical bending-torsion wing flutter has the property that
:_ the system goes from a very stable to a very unstable system with only a

. small change in freestream velocity. This can be described mathamatically
N using a damping derivative. A numerical approximation of this damping

. derivative is useful in the root locus formulation employed here. 1t is
constructed from the real part of the roots, O, at two slightly different
velocities, Un and Un+

1

T s o -

_— "

du Ay U -

(C.1)

Two velocity values, at n and n+l increments in the root locus development,

are compared with the associated real parts of a root of interest. As the
- velocity increment is made smaller, a good approximation can be obtained
for the damping derivative, and the approximation gives a numerical value

to the degree of explosiveness of a root crossing the imaginary axis.

Table C2 presents the numerical damping derivative for some of the

test points of the wind tunnel model. Collected in this table are data for

I 2 S I

sc¢lected sw oep angles using a fiber kick angle of 15°.  For each angle the

value of the damping derivative is calculated using the velocity value just
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prior to and the one at divergence. By comparing the damping derivative
for the given geometries, the case with the smallest damping derivative at
divergence is shown to be the sweep case of -15°.  The small damping
derivative suggests that relatively large changes in velocity are required
to observe significant changes in damping. This level of the damping
derivative could appear in testing as vague responses around the
neutral-stability velocity, and it is this geometry that demonstrated the
vague test response. This correlation of pred:cted response versus test
response reinforces the assumption that in the neighborhood of the
imaginary axis the subcritical airloads of the Padé Approximants produce

gocd sub-critical response predictions.

In summary the comparisons of the Padé Approximant solution with the
wind-tunnel data show that this analytical technique can predict low-speed
divergence instabilities as well as flutter. The sub-critical predictions
of the damping derivative also suggest that the Padé& Approximant airloads
work well for lightly damped wing motion. These correlations provide some
confidence in the Padé Approximant aerodynamics and their application to

active control solutions of wing aeroelastic divergence and flutter.
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